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Preface

The remaining useful life (RUL) of a system is defined as the length from the
current time to the end of the useful life. The concept of the RUL has been widely
used in operational research, reliability, and statistics literature with important
applications in other fields such as materials science, biostatistics, and economet-
rics. However, there are many definitions as what is regarded as the useful life. In
‘Businessdictionary.com,’ it defines the useful life “the period during which an
asset or property is expected to be usable for the purpose it was acquired’. However,
in accounting, it is defined as ‘the expected period of time during which a depre-
ciating asset will be productive.” The keyword here is ‘usable’ or ‘productive’
which is again upon individual explanations. Clearly the definition of the useful life
depends on the context and operational characteristics. In this book we will assume
that the definition of the useful life is known to the owner of the asset and the main
interest is to investigate the modeling methods for RUL estimation given condition
and health monitoring information.

In conventional data-based approaches, estimating the RUL is achieved by
evaluating the conditional lifetime distribution given that a system has survived up
to a specific time. The obtained RUL distributions from these approaches are
generally based on the life characteristics of a population of identical systems and
lifetime data are required. However, such data are scarce in reality or even
nonexistent at all for systems which are costly or time-consuming to collect the life
data. With the advances in CM technologies, degradation data can be obtained from
routine CM as feasible and low-cost alternatives to estimate the RUL. These data
are usually correlated with the underlying physical degradation process. If they are
properly modeled, degradation data can be used to predict unexpected failures and
accurately estimate the lifetime of gradually degraded systems. In many situations,
such as the drift degradation of an inertial navigation system used in the aerospace
industry, it is natural to view the failure event of interest as the result of a stochastic
degradation process crossing a threshold level, i.e., to model the hitting time of the
degradation as a time-dependent stochastic process. On the other hand, dynamic
environments induce changes in the physics of failure.
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RUL prognosis is one of the key factors in condition-based maintenance (CBM),
and prognostics and health management. It is critically important to assess the RUL
of an asset while in use since it has impacts on the planning of maintenance
activities, spare parts provision, operational performance, and profitability of the
owner of an asset. RUL estimation has also an important role in the management of
product reuse and recycle which has strategic impacts on energy consumption, raw
material use, pollution, and landfill. The reused products must have sufficient long
lives left among others to be able to be reused. This puts the importance of the
estimation of RUL beyond CBM and prognostics and health management because
of the green issues associated. As a consequence, developing RUL prognosis
methods is much desired for health management of degrading systems to prevent
sudden failure and reduce the safety risk. In the past four decades, valuable con-
tributions to prognostics in reliability field have been made. This book is intended
to summarize the research results studied mainly by the authors in the past decade.

This book introduces the main ideas of data-driven remaining useful life prog-
nosis techniques, with an emphasis on stochastic models, methods, and applica-
tions. It gives a thorough survey of new methods that have been developed in the
recent years and demonstrates them with examples. To the knowledge of the
authors, all major aspects of RUL prognosis are treated for the first time in a single
book from a common viewpoint. With the presentation of RUL prognosis methods
for degrading systems, the book provides novel materials that have not yet been
described in monographs or textbooks.

This monograph consists of four parts:

• Part I: Introduction, Degradation Data Acquisition and Evaluation.
Advances in data-driven RUL prognosis techniques are reviewed. As funda-
mental issues for data-driven RUL prognosis, methods of how to acquiring the
degradation data and how to evaluate the usability of the acquired data are
presented.

• Part II: Prognostic Techniques for Linear Degrading Systems. Methods for
adaptive RUL prognosis, exact RUL prognosis solution, RUL prognosis with
multiple kinds of variability for linear degrading systems are presented and the
methods are demonstrated by case studies.

• Part III: Prognostic Techniques for Nonlinear Degrading Systems. Methods
for nonlinear degradation modeling, adaptive RUL prognosis, nonlinear RUL
prognosis under multiple sources of variability, residual storage life prognosis
with switching systems for nonlinear degrading systems are presented and the
methods are demonstrated by case studies.

• Part IV: Applications of Prognostic Information. This part discusses the
applications of prognostic information such as mission reliability estimation,
condition-based replacement, spare parts forecasting, and joint optimization of
spare part ordering and replacement.

As each of the models used requires its own mathematical background and the
methods based on these models follow different lines of thinking, the book cannot
present the methods for all details. The aim is to give the readers a broad view of the
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field and provide them with bibliographical notes for further reading. A further
reason for the different depth with which the chapters tackle the RUL prognosis
problems is given by the status of research. In the introductory parts of all chapters,
the problems to be solved are posed in a framework that is familiar to practicing
engineers. They describe the new ideas and concepts of RUL prognosis in an
intuitive way, before these ideas are brought into a strict mathematical form.
Examples illustrate the applicability of the methods. Bibliographical notes at the
end of each chapter point to the origins of the presented ideas and the current
research lines. The evaluation of the methods and the application studies should
help the readers to assess the available methods and the limits of the present
knowledge about RUL prognosis with respect to their particular field of application.

Together with four parts, the book is composed of 16 chapters. Chapter 1 is
devoted to an introduction to advances in data-driven RUL prognosis techniques.
Chapter 2 considers the problem of planning repeated degradation test for
degrading products with three-source variability. In Chap. 3, the attention is paid to
specifying measurement errors for required lifetime estimation performance so as to
evaluate the data usability. A linear degradation model with a recursive filter
algorithm and Bayesian updating is presented to estimate the PDF of the RUL in
Chap. 4. Chapter 5 derives the exact and closed-form solution of RUL prognosis for
linear degrading systems. Chapter 6 presents a Wiener-process-based degradation
modeling framework for RUL estimation with three-source variability. In Chap. 7,
a diffusion process-based model was presented to characterize the dynamics and
nonlinearity of degradation processes, and the corresponding RUL distribution is
formulated. The results in Chap. 7 are further extended to an age- and
state-dependent case in Chap. 8. In Chap. 9, an adaptive and nonlinear prognostic
model is presented to estimate the RUL using the history of the observed data to
date. Chapter 10 develops a real-time RUL estimation method based on a state
space model considering that the degradation process is hidden and nonlinear.
Chapter 11 presents a general nonlinear diffusion process-based model to estimate
the RUL with the temporal variability, unit-to-unit variability, and measurement
variability. In Chap. 12, the problem of predicting RSL for a class of systems with
operation state switches is concerned. Chapter 13 applies the prognostic informa-
tion to reliability estimation of phased-mission systems. In Chap. 14, a real-time
variable cost-based maintenance model is presented based on nonlinear prognostic
information. Chapter 15 presents an adaptive spare parts demand forecasting
method based on degradation modeling of the CM data. In Chap. 16, a new
sequential maintenance and inventory model is developed to consider the effects of
both expectation of the maintenance cost and its variability under prognostic
information.

In preparing the book, efforts have been made to maintain a balance between the
required theoretical and mathematical rigor in the exposition of the methods and the
clarity in the illustration of the numerical examples and practical applications. For
this reason, this book can serve well as a reference to both reliability and risk analysis
researchers and engineers. Furthermore, sufficient references leading to further
studies are cited at the end of each chapter. This book will serve as a textbook and

Preface vii



reference book for graduate students and researchers in reliability and maintenance.
Although the book is self-explanatory, a standard background in probability theory,
mathematical statistics, and stochastic processes is recommended.

Finally, we wish to thank Profs. Wenbin Wang, Donghua Zhou, and Michael
Pecht for their cooperation and valuable discussions. In addition, it is with sincere
appreciation that we thank the support by National Nature Science Foundation of
China under Grant 61174030, 61374126, 61473094, 61573076, 61573366, and the
NSF of Shaanxi Province of China under grant 2015JQ6235.

Xi’an, China Xiao-Sheng Si
July 2016 Zheng-Xin Zhang

Chang-Hua Hu
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Chapter 1
Advances in Data-Driven RUL Prognosis
Techniques

1.1 Introduction

Prognosis and health management (PHM) has drawn increasing attention and gained
deepening recognition and widening applications during the past decades [1–4].
Actually, the initial health and usage inspection system was fist equipped in the
early helicopters of US military and the synthetically health management philosophy
was presented for spacecraft in the 1970s. Recently, the comprehensive solution
for system performance prognosis and maintenance has been achieved in the Joint
Strike Fighter F-35 project [5]. Further, the ability of PHM has already been listed
by the Department of Defense (DOD) of United states as one of the essential norms
for weapon system purchasing. This shows the significant implication of PHM in
military fields. On the other side, industrial practice indicates that PHM technology
can effectively reduce the maintenance cost, improve the reliability and guarantee
the completion of tasks of the system [6, 7]. Research institutes including NASA
[8], University of Maryland [6] and George’s University [9], as well as commercial
companies such as Boeing have launched a great deal of theoretical and applied
research works about PHM technology. The PHM conference has been successfully
organized and held by IEEE Reliability Society in Shenzhen, Macau, Beijing, Rome,
and Zhangjiajie respectively, Beijing in six consecutive years since 2010.

Remaining useful life (RUL) estimation, offering guidance for sequential man-
agement involving inspection schedule, maintenance, replacement and spare parts
ordering, has been considered as the kernel technology of PHM, and the focus of
current research in the field of reliability also. According to Petch’s classical mono-
graph about PHM technology [6], methods for RUL estimation can be classified
into three kinds: namely physical model-based methods, data-driven methods and
their combinations. However, with the development of industry and the continuing
extension of human exploring activities, the complexity of a system, together with
the diversity and uncertainty of its operating environments, continues to increase,
which results in extreme difficulties in constructing physical models capturing the
system and its operating circumvents. Meanwhile, data-driven methods, including
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artificial intelligence-based methods and statistical data-based methods have become
an effective avenue to evaluate reliability and estimate RUL, especially for vital sys-
tems with high reliability and long lifetime. Artificial intelligence based methods
can hardly provide a probability density function (PDF) estimate capturing stochas-
tic and uncertain characteristics of the RUL, while this desire is a natural result for
stochastic data-driven methods [10]. To address the uncertainty of prognosis, we
mean statistic data-driven methods as data-driven methods throughout this chapter.
According to the observability of underlying degradation process, Si et al. provided
an review on data-driven methods for both direct and indirect observed degrada-
tion data, introducing many common methods including Gamma processes, Wiener
processes, Hidden (semi-) Markov models, stochastic regression models, stochastic
filtering-based models and covariate hazard-based models, from the perspectives of
applying procedure, merits and drawbacks [11]. While being satisfactory for RUL
estimation under each specific applying condition, these methods exhibit some limits
in cases with heterogeneity from the inner states or the external operating conditions
of systems.

Heterogeneity is widespread in the inner states of the system and the related work-
ing environments. Examples involve that a weapon system may experience various
operating conditions, saying storage, inspection, transport, and maintenance during
its life cycle due to different tasks; that a manufacture system produces different
products under different workloads; and that even systems from the same category
may exhibit various degrading paths in the same environment. The performance
degradation of a system is a result of interactions of both inner deterioration and
working environment of the system, indicating a need for incorporating the hetero-
geneity into degradation modeling, to achieve a more accurate RUL estimation. For
particular heterogeneity, such as the unit-to-unit variability, changing working con-
ditions and periodic tasks, many recent advances in RUL estimation have appeared.
However, to the best of the authors’ knowledge, there is still no review regarding
degradation modeling and RUL estimation for systems with heterogeneity. There-
fore, this chapter tries the best to fill this gap.

Toward the end of this chapter, three kinds of heterogeneity are considered consec-
utively: the unit-to-unit variability for systems from the same category, the variability
in time-varying operating conditions, and the diversity of tasks and workloads of sys-
tem during their life cycles. The first kind of variability describes the differences in
degradation processes of units from the same category, while the second represents
noninform working conditions related to the degradation, such as the time-varying,
multi-state and stochastic working environments or random shocks. The third kind of
heterogeneity captures the influence of changes in tasks and management activities
involving inspection, maintenance, etc. Accordingly, this chapter classifies methods
addressing degradation modeling and RUL estimation with heterogeneity into three
kinds, each of which considers one kind of heterogeneity introduced above and con-
sists of some subclassifications. The taxonomy of RUL estimation approaches for
systems with heterogeneity is illustrated in Fig. 1.1.

The remainder of the chapter is structured as follows: Section 1.2 summarizes
methods considering unit-to-unit variability, saying degradation models with random



1.1 Introduction 5

..

Fig. 1.1 Taxonomy of RUL estimation approaches for system under heterogeneity

effect In Sect. 1.3 methods considering the impact of the working conditions are
provided. Methods for incorporating the influence of diversity in tasks and workloads
are reviewed in Sect. 1.4. Section 1.5 concludes the chapter and provides several
possible directions for future studies.

1.2 Methods Considering Unit-to-Unit Variability

A large number of experiments and engineering phenomena show that systems of the
same category, even from one batch degrade differently from one another in perfor-
mance. This kind of difference in degradation is usually defined as the unit-to-unit
variability, due to the variability in inner structures of the considered systems, as
well as the diversity in their working environment. Commonly, models with random
effects are employed to capture the unit-to-unit variability, when we model the degra-
dation process and estimate the RUL. The most typical way to do so is to specify
some parameters of the model as random variables governed by distributions with
computing convenience, presenting the individuality in degradation processes from
different units and leave the rest of parameters as constants describing the univer-
sality in degradation of systems from the same category or batch. In the following,
random coefficients regression models and stochastic process models with random
coefficients of this kind are discussed, respectively.
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1.2.1 Random Coefficients Regression Models

Random effects first appeared in random coefficients regression models. In the most
frequently cited paper about degradation modeling and RUL estimate [12], Lu and
Meeker described the random coefficients regression model in a general form as

X (ti j ) = g(ti j ;φ, θ) + ε,

where X (ti j ) is the amount of the degradation of the i th device in the j th inspecting
time ti j , the fixed coefficients φ and the random coefficients θ are, respectively, used
to characterize the universality and individuality in degradation of different systems,
and is the random noise.

Random coefficients regression models have been extended, developed and
applied widely in many areas, in which a series of extended works presented by
Gebraeel et al. are included [13–15] Son et al. compared various kinds of RUL
estimation method based on random coefficients regression models [16]. Suk and
Paul proposed a nonlinear random coefficients regression method for degradation
data [17], and applied the model to the degradation of the vacuum fluorescent tube
display. To improve the accuracy of parameter estimation, Weaver and Meeker also
studied the optimal design of repeated measures degradation studies, and the method
to design accelerated repeated degradation studies [18, 19]. A procedure deciding the
minimum sample size and the minimum times of systematic sampling for each item
to achieve an anticipant accuracy of estimation (large sample approximate variance)
has been provided in their works.

However, according to Wang’s analysis in [20], the assumptions of random coef-
ficient regression models result in several limitations, involving the need for more
historical degradation data from different systems of the same category, the difficulty
in capturing the time-varying dynamics of systems and the independency between
random noise with time.

1.2.2 Stochastic Process Models with Random Coefficients

Incorporating random coefficients into stochastic degradation process-based mod-
els enables both considerations of time-varying dynamics of an individual sys-
tem, and description of unit-to-unit variability, and thus has been favored by many
researchers. Suppose that the degradation of a system is modeled by a stochastic
process {X (t); t ≤ 0, θ ,ϑ}, with constant parameters θ and random parameters ϑ .
Under the concept of first passage time (FPT), the RUL of the system conditional on
the observation X (tk) at time tk is defined as

Lk := inf {lk : X (tk + lk) ≥ ω|X (tk) < ω},

where is a preset constant failure threshold.
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Lawless proposed a Gamma process-based model containing the covariates and
random effects, and applied it to degradation modeling and RUL estimation [21].
When fitting the semi-parametric Gamma process to degradation data, Ye et al.
also took the random effects into consideration. Further, the unit-to-unit variability
was captured using random parameters following some particular distributions in
recent degradation models based on Inverse Gaussian process [22, 23]. The same
specifications addressing differences in the degradation process of systems from the
same category were used in the application of Inverse Gaussian process for systems
with monotonous degradation by Wang [24] and Ye et al. [25]. For nonmonotonic
degradation processes with fluctuations, Wang proposed a Wiener degradation model
with random effects [26]. Si et al. presented a degradation path-based RUL estimation
method with exact closed form solution of the estimated PDF of the RUL in linear
and exponential cases, which also incorporated the random effects. Peng and Zeng
analyzed the misspecification of linear degradation model in the framework of Wiener
process with random drift coefficient [26]. Similarly, Si et al. [27] and Wang et al. [28]
set some parameters in their methods as normally distributed random variables, when
modeling nonlinear diffusion degradation process and additive hybrid degradation
process, respectively. From results in the existing literature, stochastic process models
with random effects can effectively improve the estimation accuracy and extend the
applications of the initial degradation models, in both cases of monotonous and
nonmonotonous degradation processes no matter linear or nonlinear.

In the industrial applications, the main flaw of degradation models with random
effects is the complexity in computation. Therefore, the primary concern choosing the
random parameters and their distribution models is the convenience of calculation.
Normally distributed random variables are with high frequency in the related litera-
ture. For example, in Tseng and Yu [29], Lu and Meeker [12], Gebraeel [13], Si [30],
all selected models with random variables following Normal distribution to charac-
terize unit-to-unit variability. As for some particular degradation models, parameters
subjected to special forms of distributions are preferred. Wang utilized Gamma dis-
tributions to mode the drift and diffusion coefficients in the Wiener degradation
model [26], and Ye el al. also used gamma distributed parameters when construct-
ing semi-parametric Gamma degradation process. These choices are made due to
the purposes of computing convenience. The misspecifications of such distributions
are considered by some researchers and some nonparametric distributions based on
observations are recommended [31–34]. However, explicit results of the estimated
RUL can hardly be derived when nonparametric distributions are used. Besides, the
corresponding computation is always complicated, which makes it inadequate for
real-time RUL estimation. Therefore, it is a challenge to reasonably choose random
parameters and their distributions that cannot only capture the unit-to-unit variability
but also benefit computation, when using degradation models with random effects.
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1.3 Methods Considering Impact of Heterogeneity
in Working Environment

1.3.1 Methods Based on Stochastic Filtering

As early as 1979, Sarma et al. estimated health state of aerospace engine using
Kalman Filter (KF) technology, and achieved a maintenance decision optimization
based on the estimated results [35]. Afterwards, Wang and Christer [], Batzel and
Swanson [], proposed different state evaluation and RUL estimation methods, applied
successfully to electromagnetic induction smelting furnaces, aeronautical batteries
and other industrial systems, based on the construction of state-space models. As
for the nonlinear and nonGaussian state-space models, Extended KF, Benes Filter,
Multiple Model Filter and Particle Filter based methods for health state and RUL esti-
mation, have been successively proposed [36–40]. When the impact of heterogeneity
is incorporated into stochastic filter-based methods, two kinds of sub methods can
be referred to, namely semi-stochastic filter based methods and adaptive parameter
based methods.

Ability to handle unobservable degradation is an advantage of stochastic filter
based methods, while the failure threshold of the unobservable degradation can hardly
be specified. In this connection, the lifetime of a system is directly defined as a state
in the state-space model by Wang and Christ, and the length of time interval between
two consecutive inspections is treated as the decrease of the lifetime. As such, RUL
estimation method based on stochastic filter was proposed in [20] through construct-
ing a stochastic relationship between the condition monitoring data and the lifetime
of the system. This original method has been extended to cases where the operat-
ing environments are considered, by establishing the stochastic relationship between
lifetime with the condition monitoring information and the operating environments
simultaneously [41].

In another class of approaches for degradation modeling, some important para-
meters are expanded as state of a state-space model, which is utilized to describe
dynamics in parameters. These parameters are adaptive to the changing environmen-
tal variables and updated jointly online with the healthy state of the system. As a
result, the updated states and parameters are substituted to obtain a new estimation
of RUL. Wang and Mattgew set the drift coefficient in Wiener process as an adaptive
parameter, which will be updated through KF technology once new observations are
available [42]. Inspired by [42], Si et al. proposed a Wiener degradation model with
nonlinear drift coefficient function, which also makes some parameter adaptive to
the observed data [43, 44]. In this chapter concerning models for RUL estimation
under three sources of variability, the drift coefficient was also treated as an adaptive
parameter and expanded to a state in the state-space model describing the degra-
dation of the system, and was updated with the degradation level on-line [45]. The
successful application of this method in the RUL estimation of an inertial navigation
system has shown much superiority of such method.
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The best advantage of such stochastic filter based RUL estimation methods lies
in that the parameters and the accordingly RUL estimation can be updated with the
newly observed condition monitoring information. Furthermore, the dynamics in the
degradation process and the probable measurement errors are taken into considera-
tion, which makes it suitable for indirectly observable degradation process. However,
these methods have a premise in common that an explicit state-space model must
be constructed, which may be impossible in some cases. Another limitation is that
the RUL estimation is obtained without consideration of the possible future changes
in the degradation. In addition, the assumption in the semi-stochastic filter based
method that there is a deterministic equal relationship between the reduction of life-
time and the inspection interval may not hold in many cases, especially when there
are changes in the operating environments of the workloads of the system.

1.3.2 Multi-stage Degradation Models

Multi-stage degradation models are proposed to handle the period differences existing
in the degradation process. In Wang’s two stage degradation model, the degradation
data after the defect point were used to estimate the parameters in the degradation
model and predict the RUL of the system [46]. In order to evaluate the remaining
storage lifetime of a system, Feng el al. proposed a multi-stage Wiener degrada-
tion model in [47], where some related works were listed. These works include the
nonhomogeneous Poisson process which can be used to analyse time-varying fail-
ure rate of software, the nonlinear model with random coefficients which is applied
to the multi-state nonmonotonic degradation process of hardware, the multi-stage
linear regression model, the multi-stage linear stochastic process model, and so on.
Li and Pham studied the reliability modeling problem of multi-state degrading sys-
tems, under the interaction of multi competing failure modes and random shocks
[48]. The common shared by these models is the presence of change points, such
as the defect point in two-stage model and the starting/finish points of each stage.
Generally, the unknown locations of these change points have to be determined by
selecting appropriate detection methods before model identification and RUL esti-
mation. This problem has been considered as highlight but also aporia. Currently, the
maximum likelihood estimation, stochastic filtering, and control charts are the most
popular methods to estimate the change points in multi-stage degradation models.
Thus, the accuracy of change points estimate has direct influence on the accuracy
of the RUL estimation. Another popular multi-stage degradation process for RUL
estimation is the Markovian model. To model the hidden degradation process, Hid-
den Markovian Model (HMM) was first introduced to RUL estimation and condition
based maintenance (CBM) [49]. On this basis, Dong et al. proposed the RUL esti-
mation framework by using Hidden semi-Markov Models (HsMM), which extends
the exponential assumption of state sojourn time to more general situations [50].
He and Dong extended the work in [50] and obtained RUL estimation through a
comprehensive consideration of sojourn time in each state which has been modeled
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by a single HsMM [51]. Prognosis of both performance and RUL were achieved in
[52] by a combination of HsMM and AR model for time series data. Giorgio, Guida
and Pulcini considered the age- and state-dependency of the degradation process
in the framework of Markovian degradation model [53, 54]. A very good result
was obtained when the proposed models were applied to the degradation process of
marine engine cylinder.

The proposition of these models improves the accuracy of degradation modeling,
and enriches the selections of models for different degradation processes. However,
almost all multi-stage degradation models face the problem of determining the num-
ber of degradation stages, and a large amount of training data as well as a complex
computation procedure are needed for parameter estimation. Further, instead of a
derivable analytical solution to the PDF estimate of the RUL, a time-consuming
simulation based methods have to be executed. In addition, the RUL estimation in
multi-stage degradation models is based on the information since the latest change
point. Such an estimation of RUL is accurate if there will be no change occur in the
future time of the system. In more practical situations with possible change points
in the future, severe bias will be introduced into the RUL estimation if using such
estimation mechanism, i.e., ignoring the possible change points in the future. To
tackle this problem, the possible change points in the future should be considered in
multi-stage degradation processing modeling and RUL estimation.

1.3.3 Covariate Hazards Model

Factors that affect degradation in performance of systems are defined as covariates
in engineering pactive. The classical model for lifetime analysis, named proportion
hazards model, is the most widely used ones in the fields of RUL estimation, reliability
analysis/evaluation, decision-making and optimization on maintenances, etc. The
existing works related to hazards models have been reviewed in [55]. The description
of the system failure rate is the core of the proportional hazards model, and also the
key for reliability assessment and RUL estimation. Failure rate in the proportional
hazards model usually consists of the product of a reference failure rate function
h0(t) and the covariate function ψ(β z(t)),

h(t |z(t)) = h0(t)ψ(β z(t)),

where z(t) are the covariate variable, β are the regression coefficients which can be
estimated using historical lifetime data or censored lifetime data of the system from
the same category. Proportional intensities model and proportional covariates model,
developed from the proportional hazards model, are also popular models for RUL
estimation [].

In heterogeneous working environments, the failure rate of the system will be
affected. Ye et al. studied the influence of heterogeneity in the working conditions
on the estimation of the RUL, based on the analysis of accelerated life test [56].
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A system may experience fixed, time-varying, and even stochastic environmental
conditions and the corresponding covariates may also be constants, time-varying or
even random variables. In order to characterize the influence of random covariates on
the failure rates in the proportional hazard models, researchers have considered using
some stochastic process to model the time-varying covariates, and incorporating
the modeled covariates into the proportion hazard models. For example, Markov
chains, which can naturally describe the operating process of a system, are the most
frequently used process to model the changing procedure of covariates [57–59].
A HMM with a known state transition law was utilized to model the stochastic
degradation process, and the formula to calculate the mean RUL was derived in [60].
Lu and Liu studied the relationship between failure rates and the dynamic working
environment [61]. In their research, the changing covariates were modeled by a two
states (normal/severe) Markov Chain, as such, failure rate functions are changing
with operation function, and the lifetime of the system can then be determined by its
working conditions.

Although their strong explanatory property makes covariate hazard models dom-
inant both in theory and application researches, this kind of method does have some
inborn limitations, which have been summarized by Si et al. in [11]. Furthermore,
some difficulties should be solved before the practical applications of this kind of
methods. First, with the development of high reliability and small amount systems,
the lifetime data required for estimating parameters β and reference failure rate func-
tion h0(t) are difficult and expensive to obtain. Second, it is hard to determine the
form of covariate function when systems become complex.

1.3.4 Degradation Models Involving Random Shocks

During the degradation process, a system may suffer various kinds of shocks, which
will impact the performance of the system as well as its underlying degradation
process. Typically, there are five different types of random shock models existing in
the literature [62]: (i) extreme shock model: the system fails when the size of a shock is
beyond a specified threshold value; (ii) cumulative shocks model: a system fails when
the accumulated damage of shocks is beyond a critical level; (iii) m-shock model:
a system failures after suffering m shocks whose sizes are greater than a critical
level; (iv) run shock model: failure occurs when there is a series of n consecutive
shocks that are greater than a threshold; and (v) shock model: a system experiences
failure when the inter-arrival time of two sequential shocks is less than a threshold.
As for reliability modeling and RUL estimation under random shocks, there have
been a number of studies including [63, 64] to which we can refer. Random shocks,
whose influences on the performance of a system are addressed in this section,
are regarded as heterogeneity in the working environment. In general, failure is
a result from the interaction and competition of the performance degradation and
external random shocks [65–67]. Poison process (homogeneous/nonhomogeneous)
[68], Markov Chains [69], and the phase-type distribution [70, 71] have all been
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used to describe the arriving process of random shocks. Models for degradation
processes with random shocks can be divided into two categories here, according to
the existing of interdependency between the continuous degradation processes with
random shocks.

Degradation processes and random shocks are supposed to be independent of
the first type of models. Klutke and Yang first proposed an availability model for
the system under interaction of degradation and random shocks [65]. Afterward,
Huang and Askin analyzed and constructed a reliability model for systems under the
competing impact of the degradation process and sudden failure [72]. Li and Pham
proposed a reliability model for a system suffering two types of degradation and a type
of random shocks [73]. Chen and Li assumed that from the external environment the
degrading system may experience two types of random shocks, i.e., fatal or nonfatal
[74]. An optimal maintenance strategy was proposed under a further assumption that
system’s tolerance of the total number of nonfatal shocks decreases subjected to the
times of maintenance. A common underlying assumption of the works in [65, 72–
74] is that degradation processes causing softer failures and random shocks leading
to hard failures are independent from each other, and no mutual influence between
degradation and shocks exists.

The interactions between shocks and degradations are considered in the second
type of models. When studying the reliability and maintenance model for the system
under competing degradation process and random shocks, Wang and Pham supposed
that fatal shocks caused a direct failure of the system while nonfatal shocks resulted
in abrupt increases in the degradation level [75]. The interdependency of soft failure
caused by degradation and the hard failure caused by random shocks was included in
Peng’s work about reliability modeling [76]. Liu et al. considered the relationships
between the failure rate of a system with age, degradation level and their interactions
in the degradation model [64]. Recently, Koosha studied the influence of various
types of random shocks on the degradation processes of the system and supposed
that the level of degradation process jumped once a shock came while the degradation
rate changed only after a particular type random shock [62]. A reliability model for
dependent competing failure processes with changing degradation rate was then
proposed based on this dependency of degradation process on random shocks.

The primary drawbacks of using such kind of methods are the following: (1) Lots
of existing works incorporated random shocks to the linear degradation process,
while degradation processes of actual systems are often nonlinear. To be more prac-
tical, the influence of random shocks on nonlinear degradation processes should
be considered, which has seldom been done except [76, 77]. (2) As for discretely
inspected system, the time and influence amplitude of random shocks can hardly be
measured directly, which may introduce extreme difficulties in model identification
and parameter estimation. (3) In cases where the dependency between degradation
processes with random shocks is considered, attention has been focused on the influ-
ence of random rocks on (levels and rates) degradation process, while researches
about impact of degradation on random shocks and the interdependency between
each other are rarely reported except for [77, 78]. (4) Random shocks in degradation
models are assumed to be negative, causing the increase in degradation level and
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even the failure of the system. However, there exist some shocks improving the sys-
tem’s performance, e.g., the state-of-health regeneration phenomena in lithium-ion
battery systems. As such, this kind of shock should be further considered into the
degradation process in the future.

1.4 Methods Considering the Impact of Tasks
and Workloads

1.4.1 Degradation Modeling for Systems with Dynamic
Workloads

Due to the diversity and randomness in the operating environments and workloads of
systems, the characteristic of degradation varies with age throughout the whole life-
time cycle. If the dynamic operating model of the system’s workload is constructed
scientifically and incorporated into the degradation model reasonably, a more accu-
rate estimation of the RUL will be achieved.

During the industrial applications, some systems change their working state in
several different working modes, corresponding to which are the different workloads
and various degradation processes. For example, a missile weapon system with an
extremely long storage before being launched may experience different working
states involving storage, transportation, inspection and maintenance during its ser-
vice. Studies have shown that, due to influences of temperature, humidity and human
factors in the storage conditions, the performance of gyroscopes installed in an inertial
navigation system (INS) exhibit some decreasing trends, which will be accelerated
by each electrifying inspection, after some time of storage [79]. Moreover, the states
switching of the system is a stochastic process, because of the uncertainty in the
coming of different tasks or missions A continuous-time Markov model (CTMM)
with finite state is a natural selection to describe such a stochastic operating process
[80, 81]. In literature, CTMM was used to capture the time-varying random working
conditions of a system in Jeffrey and Steven’s stochastic models for degradation-
based reliability [82]. Si el al. also utilized two-state CTMM to represent the states
switching process between storage and usage, and the operating model was suc-
cessfully applied to estimate the remaining storage life (RSL) of gyroscopes in INS
[83]. Hawkes proposed a reliability assessment model based on the CTMM mod-
eling of working condition switches. Huynh modeled changing working conditions
using CTMM and incorporated the results into the decision-making framework for
adaptive CBM decisions [84]. Another focus when the dynamics of the workloads
are of concern is to establish the relationship between the operating conditions and
the degradation process of the system. This relationship is usually supposed to be
totally known or at least particular functions with unknown parameters which can
be estimated by using the observations of both operating conditions and degradation
process. Jeffery pointed out that this relationship varies case-by-vase and should be
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determined according to the specific characteristics of the device [82]. When Wiener
process was used as the degradation model, Si el al. assigned different drift coef-
ficient values for the system in the state of usage and storage, respectively [83].
Besides, Arrhenius model and Eying model are frequently used to represent the
relation between the degradation and working environments for electromechanical
systems.

It is worth noting that the existing methods suffer some limitations. On one hand,
the primary limit of CTMM is that the sojourn time in each state is exponentially
distributed, which may be incompatible with the facts in practical applications in
industry. To overcome this shortcoming, a semi-Markov model can be employed.
Besides, when the operating information cannot be recorded directly, the according
HMM and HsMM should be used to model the operation process of the system. On
the other hand, with more and more complex structures of systems, the relationship
between the degradation with operating conditions can be neither characterized by the
simple existing laws, nor constructed through physical analysis, which may restrict
the application of this kind of methods.

1.4.2 Degradation Modeling for System with Maintenances

Maintenance is an effective way to remove faults, reduce failure rates and improve
the reliability throughout the lifetime of the system. Scientific and reasonable mainte-
nance schedule can efficiently reduce the operating costs and the risks of the system,
which also works for degrading systems [85]. Degradation modeling and mainte-
nance activities of systems are closely related. On the one hand, the results of relia-
bility evaluation and RUL estimation based on the degradation data offer the health
evaluation information required for scheduling maintenance activities. On the other
hand, maintenances improve the performance of the system and thus change the
degradation path. To extend the application of the degradation model and improve
the accuracy of RUL estimation, the influence of maintenance on degradation should
be taken into consideration.

There are plenty of studies addressing preventive maintenance and optimal inspec-
tion based on degradation modeling [86–88], and some relate to the effects of main-
tenances on systems’ performance [89, 90]. Popular models include the ’repair as
new’ model and the ‘repair as old’ model [91]. Both kinds of models assume that
the performance of the system will be improved by maintenances, and the hazards
functions are used to describe the effects of maintenance activities. In the ‘repair as
new’ model, the system can be restored to the original state after a perfect main-
tenance, usually corresponding to the hazard increasing model [92]. The ‘repair as
old’ models assume that maintenances on a system are imperfect so that the perfor-
mance of the system recovers to a level worse than that of new system [93] Besides,
the system degrades until the next maintenance or failure whichever comes first.
Recently, Wang et al. employed a renewal-reward process perturbed by a diffusion,
which is also defined as a Wiener process with random jumps elsewhere, to model
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the influence of maintenances [94]. The most inspiring idea in this work is that jumps
with random arriving time and amplitude opposite to the trend of degradation are
utilized. Under the concept of the FPT, the PDF of the RUL was provided based on
simulation.

In consideration of degradation modeling under maintenance intervention, there
are still many issues deserving further studies: (1) The time consumed by a mainte-
nance which is ignored in most existing researches, is not negligible in some cases.
Compared to occupying time of the degradation between two consecutive mainte-
nances, the time consumed by maintenances is generally so short that it has always
been ignored. The rationality of this assumption should be queried and studied when
the maintenance time cannot be omitted. (2) The dependency of maintenance effects
on the age of the system and time spent by maintenances should be considered. (3)
Various maintenance activities such as minor repair, major repair, and replacement
with different effects on the systems’ degradation process exist in the maintenance
policy of the system. The diversity of maintenance activities and the according influ-
ence on the degradation of systems should be treated discriminatingly and syntheti-
cally when estimating the RUL of the system.

1.5 Future Research Directions

Degradation modeling based RUL estimation, as the foundation and kernel technol-
ogy of PHM, is now the focus of researches in reliability. With the development
of complex systems, the extension of the sphere of human exploring activities, the
diversification of workloads of the system and the increase in man–machine inter-
action, the system may experience more and more heterogeneity during its service.
Thus, degradation modeling based RUL estimation approaches for systems with het-
erogeneity have been favored by many researchers and engineers. In this chapter, we
reviewed the existing approaches in literature, from three aspects including methods
considering unit-to-unit variability, methods considering the impact of heterogeneity
in working environment and methods considering the impact of tasks and workloads.
The pros and cons of these reviewed methods are discussed. From this survey, it is
observed that the incorporation of heterogeneity into the degradation models enables
more accurate RUL estimation under practical conditions, but plagues us with extra
difficulties in the derivation, inference and computation of the PDF estimate of the
RUL and the model parameters According to the current research results and the
limitations of existing approaches, there are still a number of challenges and prac-
tical problems to be further studied. Specifically, it is concluded that the following
research topics deserve the future studies and the fundamental theoretical problem
behind these topics are still unsolved.

(1) It is desirable to develop age- and state-dependent prognosis models. There
exist some industrial systems whose degradation processes are closely dependent on
the age- and instantaneous degradation state of the degradation. However, the studies
on age- and state-dependent degradation modeling are very limited in literature, as
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opposed to a great deal of efforts made to age-dependent degradation models. Most
recently, Giorgio et al. in [53, 54] made the first attempt along this direction and
presented some Markov chain based degradation models whose transition probabil-
ities between the process states depend on the current state and the current age of
the system under study. It is worth pointing out that their developed models are only
suitable to represent strictly monotonic degradation processes. However, in many
industrial systems, a nonmonotonic degradation process, e.g., resulting from minor
repair or reduced intensity of use, can provide a good description of the system’s
degradation signals. Besides, the continuous degradation process is approximated
by a Markov chain with discrete degradation states in [53, 54]. This approximating
process introduces many context-dependent parameters, which might pose difficulty
in applications. Together with these discussions, it can be concluded that it is still
challenging to develope age- and state-dependent degradation models for continu-
ously degradation systems whose degradation progression might be nonmonotonic.

(2) The RUL estimating methods based on multi-source reliability data fusion
are active demand for reliability engineers. After a period of service time of a sys-
tem, various sources of reliability data can be collected, including lifetime data
from accelerated lifetime test and the failed systems under industrial conditions, the
degradation data from the accelerated degradation test and condition monitoring,
and expert knowledge on system reliability, etc. These data, involving qualitative
knowledge and quantitative information, contains abundant message reflecting the
reliability of the system. However, effective and practical methods fusing these data
to achieve a reasonable RUL estimation are still limited. The only exceptions are [95]
where lifetime data from the accelerated lifetime test were used to assess lifetime
distribution under working conditions and [96] where lifetime data of failed systems
of the same category and degradation data are fused to estimate the RUL. Never-
theless, data fusion methods are still desired especially for degradation data from
different working environments, and qualitative expert knowledge and degradation
data of extremely expensive systems with high reliability.

(3) Another challenge is the RUL estimation for degrading systems with state
changes. In engineering practice, a system may experience different working envi-
ronments and changes of states in different modes. Si et al. introduced the state
switches of an INS between usage and storage and the differences of degradation in
each state [83]. The degradation process of the system in switching random envi-
ronments was modeled in [97]. Li-ion batteries [98, 99] and OLED systems [100]
alternate their states between the usage and storage. The capacitance/inner resistance
of the Li-ion batteries decreases/increases with the cycles of charge and discharge,
indicating the degradation of the performance in the usage state, while some recov-
eries reflected by increase/decrease of capacitance/inner occurred during the state of
storage. Similar phenomena can also be observed in the degradation of OLEDs. To
simplify computation, the state changes of the system and their influence are ignored
in current studies, which pose biases and even errors to the estimated RUL. Though
considering the state switches is difficult, it is of important theoretical significance
and application prospect to take the state changes into account when the degradation
process is modeled.
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(4) To be more practical, it is desiderated to develop methods to estimate the RUL
for systems with multiple failure modes and multiple components. The majority of
engineering systems consist of many components, each of which may have sev-
eral degradation modes that can lead to the failure of the whole system. Furthermore,
there might be interrelationship among different components connected to each other.
Whilst the failure of a degrading system is a result of interactions of inner complex
structures and the external working conditions, most models are built for single-
component systems with only one failure mode. Therefore, developing RUL esti-
mation methods for multi-component systems with multi failure/degradation modes
will speed up the application of theoretical methods to the practical systems.
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Chapter 2
Planning Repeated Degradation Testing
for Degrading Products

2.1 Introduction

Degradation information regarding the system’s health state, especially from highly
reliable items, has been a useful alternative for the system’s remaining useful life
(RUL) estimation, as well as a valuable basis for condition-based maintenance
(CBM). Once the degradation information of a system is available by the degradation
test, one well-recognized method is to establish a stochastic degradation model to
predict the distributions of the future degradation and the associated lifetime, based
on the relationship between the degradation and failure time. However, the accuracy
of the aforementioned degradation or lifetime distributions is heavily influenced by
the accuracy of the parameter estimation, which is affected by the number of items
and the sampling frequency of each item. Therefore, to achieve a satisfactory prog-
nosis accuracy, engineers need to decide how many items should be measured and
how often should the measurements be made, before the degradation studies are
performed [1]. In addition, the degradation test is usually costly, particularly for
highly valued systems or vital components. In this case, how to achieve a tradeoff
between the limited fund and the required estimation accuracy for important statistics
of interest is also an interesting problem deserving in-depth studies.

Researchers and engineers have paidmuch attention to the degradation test design,
particularly in the field of accelerated degradation test planning. Meeker et al. in [2]
discussed themodeling and analysis issues of accelerated degradation test. Tseng and
Yu in [3, 4] proposed several appropriate termination rules for degradation experi-
ments. The works in [5, 6] considered optimal step-stress accelerated degradation
test design for Wiener process and Gamma process, respectively. In the works of
[5, 6], the temporal variability in stochastic degradation characteristics is involved,
while both the unit-to-unit diversity and the measurements variability are ignored.
Shi et al. in [7] studied the test planning methods for accelerated destructive degrada-
tion, where only themeasurement errors were taken into account. Recently, Bayesian
methods for designing accelerated destructive degradation test have also been devel-
oped by [8]. In addition, Weaver et al. in [1] documented several useful methods for
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planning repeated degradation tests. In these two works, both diversities among units
and measurement errors are considered, but the temporal variability is ignored in the
process of stochastic degradation modeling.

In general, the degradation process of an item is stochastic. As a result, the life-
time and the degradation in the future are also random variables, resulting in the
difficulty to predict the degradation in the future and estimate the lifetime with cer-
tainty. As summarized by [9], there are three sources of variability contributing to
the uncertainties of degradation modeling and prognosis: (1) temporal variability;
(2) unit-to-unite variability (usually modeled as random effect); and (3) measure-
ment variability. The temporal variability is referred to as the inherent stochastic
characteristics of the associated degradation process over time [10]. The unit-to-unit
variability determines the heterogeneity among the degradation paths of different
units [11]. The measurement variability describes the randomness in the measured
data of the degradation, which might be contaminated by the uncertainty during
the measurement process [12]. Therefore, a reasonable and appropriate degradation
model for prognosis has to take into account these sources of variability. It has been
found in [9] that degradation modeling with three-source variability shows great
potentiality in improving the accuracy of the lifetime estimation.

By the above survey over recent advances in degradation modeling and degra-
dation test design planning, it can be observed that, though a significant volume
of research regarding planning degradation test has appeared so far, there is no lit-
erature addressing the problem of planning repeated degradation test for products
whose degradation measurements exhibiting three-source variability. Such a method
for planning repeated degradation test is useful and desired, particularly for the case
that the concerned system is highly valued butwith limited fund conducting extensive
degradation tests.

In response to the above desire, this chapter considers the problem of planning
repeated degradation test for degrading products with three-source variability. The
degradation process is modeled as aWiener process with a random linear drift coeffi-
cient and a constant volatility coefficient, while themeasurement errors are described
as additive zero-mean random variables. Based on the presented model, the lifetime
distribution is formulated under the concept of the first passage time (FPT). After the
model parameters are estimated by the expectation maximization (EM) algorithm,
the large-sample approximate standard errors (ASE) of themaximum likelihood esti-
mation (MLE) for the mean failure time and the quantile of degradation distribution
are derived, respectively. Then, we take into account the relationship between the
performance of the measurement errors and its cost, after which we propose a con-
strained optimum designing model by minimizing the test cost under the condition
of a maximum acceptable ASE. An example is provided to illustrate the procedure
and advantages of the proposed planning method.

In summary, the contributions of the chapter mainly include two aspects. On the
one hand, based on a relatively general deterioratingmodel,we proposed amethod for
repeated degradation test planning for systems with three-source variability, which
has not been considered before but such gap is filled by this work. On the other hand,
we introduced the measurement error into the constrained optimizationmodel for the
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first time. As such, the relationship between the accuracy and cost of measurement
has been modeled and brought into the optimization of the test plans. Through such
modeling, the proposed method can provide some practical guidance on repeated
degradation tests panning for both researchers and engineers.

The remainder of this chapter is structured as follows. Section2.2 describes the
degradation model with three-source variability. The parameter estimation and infor-
mation matrix derivation framework are presented in Sect. 2.3. Section2.4 proposes
the estimationmethods for both the degradation distribution and the lifetime distribu-
tion. The method to choose an optimal degradation test plan is discussed in Sect. 2.5.
Section2.6 provided a numerical example for illustration.

2.2 Degradation Modeling with Three-Source Variability

In this chapter, the degradation process is modeled as a Wiener process with a linear
drift, which has been widely used in the field of reliability. As one kind of stochastic-
process-based degradation models, Wiener process has many favorable properties
including the ability to handle nonmonotonous deteriorating process, an analytical
result for the FPT distribution, and strong Markovian property, etc. In addition, it is
very easy to extend Wiener process to nonlinear diffusion processes, and to incorpo-
rate the measurement errors, covariates as well as random effects. A comprehensive
review of Wiener process as a degradation model can be founded in [13].

In this study, suppose that there are totally n units for the test and the i-th unit
is measured mi times. Let Dij be the degradation state of the i-th unit at time tij,
where i = 1, . . . , n and j = 1, . . . ,mi. Then, based on the Wiener process, Dij can
be modeled as

Dij = λ0i + λ1itij + σBB(tij), (2.1)

where λ0i and λ1i are the initial state (intercept) and the deteriorating rate (slope) of
the ith unit, respectively; σB is the diffusion parameter which is a constant used to
capture the level of the temporal variability, and B(t) is a standard Brownian motion.
Note that a linear drift λ0i + λ1itij is used here for the reason that many nonlinear
degradation processes can be converted into an approximated linear form as Eq. (2.1)
by some transformation techniques (see [14] for more details).

To describe the unit-to-unit variability, random effects are incorporated. Particu-
larly, it is assumed that the intercept λ0i and the slop λ1i are treated as the random
realizations following the bivariate-normal distribution [λ0i, λ1i]τ ∼ BVN(λ, V ),
where λ = [λ0, λ1]τ represents the common properties of a specific kind of units in
interpret and slope, [·]τ denotes the transpose of a vector or a matrix, and V is the
covariance matrix characterizing the unit-to-unit variability with

V =
[

σ 2
λ0

ρσλ0σλ1

ρσλ0σλ1 σ 2
λ1

]
.
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It is worth noting that, for convenience, the normally distributed random variables
are used to depict the random effects. Actually, any other forms of distributions can
be treated as random effects [11], but some difficulty in derivation may be involved.

In practice, the degradation state is usually partly observable. In other words, the
actual observation ofDij, denoted by yij is frequently influenced by the measurement
errors. Thus, the degradation measurement model can be formulated as

yij = Dij + εij, (2.2)

where εij is also normally distributed with the mean 0 and variance σ 2, representing
the measurement errors.

By now, the temporal variability, unit-to-unit variability, and measurement vari-
ability are all incorporated into the degradation model. For the notation convenience,
we gather the observations of unit i into Y i = [yi1, yi2, . . . , yimi ]T and give an equiv-
alent formulation of Eq. (2.2) as

Y i = Ziλ
∗
i + ξ i + εi, (2.3)

where λ∗
i = [λ∗

0i, λ
∗
1i]τ is a random vector drawn from the bivariate distribution

BVN(λ, V ), ξ i is another multivariate-normal distributed random vector following
MVN

(
0, σ 2

BT i
)
with

T i =

⎡
⎢⎢⎢⎣
ti1 ti1 · · · ti1
ti1 ti2 · · · ti2
...

...
. . .

...

ti1 ti2 · · · timi

⎤
⎥⎥⎥⎦ .

Zi are the design matrix of the form

Zi =
⎡
⎢⎣
1 ti1
...

...

1 timi

⎤
⎥⎦ ,

and εi = [εi1, · · · , εimi ]τ .
It is reasonable to assume that εi, λ∗

i and ξ i are mutually independent, and
the components of εi are also independent and normally distributed with εi ∼
MVN

(
0, σ 2Ii

)
, where Ii is a mi × mi identity matrix. As such, the observation

Y i follows a multivariate normal distribution MVN (Ziλ,Σ i) with

Σ i = ZiVZT
i + σ 2

BT i + σ 2Ii.

Based on the above general model description, we elaborate the issues of the
parameter estimation and the associated derivation of the information matrix in the
following section.
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2.3 Parameter Estimation and Information Matrix

Based on the structure of the presented degradation model involving three-source
variability, the EM algorithm is chosen here to estimate the model parameters. Usu-
ally, the parameters with random effects are treated as unobservable variables. After
an initial guess of the parameters, the expectation of the complete likelihood function
for both observable and unobservable variables is computed conditional on the avail-
able observations in the E-Step, followed by the M-Step which updates the guess of
the parameters by maximizing the conditional expectation. The specific algorithm
for estimating the model parameters is omitted here due to the limited space. For the
details, see [15–17].

Since the focus of this chapter is on test planning, we now check the variance-
covariance matrix of the estimated parameters. With n independent observations
[y1, . . . , yn] from Y i, the log-likelihood for unit i

Li = −1

2
log [detΣ i] − 1

2

(
yi − Ziλ

)τ
Σ−1

i

(
yi − Ziλ

)
, (2.4)

and the total log-likelihood for n units is

L =
n∑

i=1

Li

= −1

2

n∑
i=1

log [detΣ i] − 1

2

n∑
i=1

(
yi − Ziλ

)τ
Σ−1

i

(
yi − Ziλ

)
. (2.5)

Denote θ τ = [λτ ,ϑ τ ] as the parameter vector to be estimated, where ϑ =
[σλ0 , σλ1 , ρ, σB, σ ]τ . From the large-sample theory, the large-sample approximate
covariance matrix of the MLE can be formulated as

Avar(θ̂) = [I (θ)]−1, (2.6)

where θ̂ is the ML estimator of θ , and I (θ) = ∑n
i=1 Ii is the Fisher information

matrix with the definition

Ii(θ) = EY

[
−∂2Li

∂θ2

]
. (2.7)

Setting μi = Ziλ for simplicity, the specific form of the information matrix can
then be expressed as

Ii(λ,ϑ) = diag [Ii(λ),Ii(ϑ)] , (2.8)

where diag(·) is a diagonal matrix with blocks, and
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Ii(λ)j,k = ∂μτ
i

∂λj
Σ i

∂μi

∂λk
, 1 ≤ j, k ≤ 2,

Ii(ϑ)j,k = 1

2
tr

(
Σ−1

i

∂Σ i

∂ϑ j
Σ−1

i

∂Σ i

∂ϑk

)
, 1 ≤ j, k ≤ 5,

respectively.
An estimator of Avar(θ̂) denoted by v̂ar(θ̂) can be achieved by substituting ML

estimator θ̂ into Eq. (2.6). It is worth pointing out here that θ̂ is theMLE of the model
parameters and such estimating process is achieved by the EM algorithm. v̂ar(θ̂) is
the foundation to evaluate the standard error of some other important quantiles, which
will be shown in the following sections.

2.4 Estimating the Degradation Distribution
and Lifetime Distribution

The degradation distribution and the lifetime distribution, without which many sta-
tistical inference will be impossible, are two most important concerns in prognosis.
For the mean of lifetime and the quantile of the degradation distribution, a smaller
standard error corresponds to a better degradation test plan. Therefore, we evalu-
ate the degradation distribution and lifetime distribution, as well as some important
quantiles which will be used as criteria of test planning.

2.4.1 The Quantiles of Degradation Distribution
and Its Variance

We begin with the quantile of the degradation distribution. From Eq. (2.1), it fol-
lows that the degradation at time t is drawn from a normal distribution with mean
E[D(t)] = λ0 + λ1t and variance var[D(t)] = σ 2

λ0
+ σ 2

λ1
t2 + 2tρσλ0σλ1 + tσ 2

B . As a
result, the p quantile of the degradation distribution at time t can be formulated by

dp(t) = λ0 + λ1t + Φ−1(p)
√

σ 2
λ0

+ σ 2
λ1
t2 + 2tρσλ0σλ1 + tσ 2

B , (2.9)

with the inverse standard normal cumulative distribution function Φ−1(p).
Therefore, the ML estimator of dp(t), denoted by d̂p(t), can be accessed by com-

puting Eq. (2.9) at the MLE θ̂ .
FromEq. (2.9), we note that the quantile dp(t) is a function of parameters θ , which

means the formula for the approximated standard error (ASE) of d̂p(t) can be derived
through the delta method. Thus, the large-sample approximate variance of d̂p(t) can
be formulated as
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Avar(d̂p(t)) =
[
∂dp(t)

∂θ

]τ

Avar(θ̂)

[
∂dp(t)

∂θ

]
, (2.10)

where ∂dp(t)
∂θ

is the partial deviation of dp(t) with respect to θ .
Equation (2.10) indicates that the standard error of d̂p(t) is ASEd̂p =√
Avar(d̂p(t)), which can be estimated by evaluating Eq. (2.10) at θ̂ as ŜEd̂p =√
v̂ar(d̂p). Note that θ̂ is the estimation for the standard error of d̂p(t) and v̂ar(d̂p) is

the estimation of Avar(d̂p(t)). The specific forms of ∂dp(t)/∂θ k are listed as

∂dp(t)

∂λ0
= 1,

∂dp(t)

∂λ1
= t,

∂dp(t)

∂σλ0

= Φ−1(p)(σλ0 + tρσλ1)

ξ
,

∂dp(t)

∂σλ1

= Φ−1(p)(σλ1 + tρσλ0)

ξ
,

∂dp(t)

∂ρ
= Φ−1(p)tσλ0σλ1

ξ
,

∂dp(t)

∂σB
= Φ−1(p)σBt

ξ
,
∂dp(t)

∂σ
= 0,

with ξ =
√

σ 2
λ0

+ σ 2
λ1
t2 + 2tρσλ0σλ1 + tσ 2

B .

Based on the availability for d̂p(t) and ŜEd̂p , a large-sample approximation 100(1−
α)% confidence interval for dp(t) can be also achieved by

[dp(t), dp(t)] = d̂p(t) ± z(1−α/2)ŜEd̂p , (2.11)

where z(1−α/2) is the (1 − α/2) standard normal quantile.

2.4.2 The Lifetime Distribution

For the degradation process with soft failure, the life of a unit ends when its perfor-
mance degradation process hits a preset threshold ω, known as the failure threshold.
Therefore, the lifetime is defined as the FPT of the degradation process crossing ω:

T = inf {t : D(t) ≥ ω|D(0) < ω}.

The work in [9] developed a useful method to derive the lifetime distribution for
units with the degradation process described by Eq. (2.1). The probability density
function (PDF) of lifetime fL(l) and the cumulative density function (CDF) FL(l)
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can be evaluated using the law of total probability, given the corresponding results
of the degradation model ignoring the random effect in parameters.

Thus,webegin the discussionwith a simplifiedmodelwithout considering random
parameters. Then, thePDFandCDFof lifetime corresponding to the simplifiedmodel
are respectively formulated as

fL|S(l) = ω − λ0√
2π l3σ 2

B

exp

(
− (ω − λ0 − λ1l)2

2σ 2
B l

)
, (2.12)

and

FL|S(l) = 1 − Φ

(
ω − λ0 − λ1l

σB

√
l

)

+ exp

(
2λ1(ω − λ0)

σ 2
B

)
Φ

(−ω + λ0 − λ1l

σB

√
l

)
. (2.13)

Equation (2.12) shows that the lifetime is an inverse Gaussian distribution with

mean ω−λ0
λ1

and covariance (ω−λ0)σ
2
B

λ3
1

. Due to the law of total probability, and the

results in [17], when the random effect is considered, the PDF of lifetime fL(l) can
be formulated as

fL(l) = W
(
σ 2
B l + bTVb − aTVb

) − σ 2
Bla

Tλ − bTVbaTλ + aTVbbTλ√
2π

(
σ 2
B l + bTVb

)3

× exp

[
−

(
W − bTλ

)2
2

(
σ 2
B l + bTVb

)
]
, (2.14)

where aT = [1, 0] and bT = [1, l] for brevity.
Accordingly, the CDF of the lifetime FL(l) can be obtained as

FL(l) = 1 − Φ

⎛
⎝ c1 + dT1λ√

1 + dT1 Vd1

⎞
⎠

+ 1

|AV | 1
2

exp

[
2λTBλ + 2λTa2 + (2Bλ + a2)Ta

−1
2 (2Bλ + a2)

2

]

× Φ

⎛
⎝c2 + dT2λ + dT2A

−1(2Bλ + a2)√
1 + dT2Ad2

⎞
⎠ , (2.15)

with parameters c1 = W
σB

√
l
, d1 = − 1

σ 2
B

√
l
[1 l], c2 = − W

σB

√
l
, a2 = [0 W ], d2 =

− 1
σ 2
B

√
l
[−1 l], A = V−1 − 2B, and
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B =
[
0 −1
0 0

]
.

Even in the situation where the unit-to-unit variability is ignored, no analytical-
form quantile of the lifetime distribution can be obtained, which leads to either the
use of iterative algorithm or an approximation of the distribution itself [13]. By
contrast, the mean of the lifetime, which is frequently used in statistical inference
and decision-making, should be estimated with a requirement of the degradation test
performance. In this chapter, the standard error of the MLE for the mean lifetime is
considered in the planning of the degradation test.

Thanks to the law of total probability, we can obtain the mean lifetime as

EL = ρσλ0 +
√
2(ω + ρλ1σλ0 − λ0σλ1)

σλ1

G

(
λ1√
2σλ1

)
, (2.16)

where G(x) = exp (−x2)
∫ x
0 exp (u2)du is the Dawson integral for all real x.

Furthermore, the delta method is employed to estimate the standard error for the
MLE of the mean lifetime ÊL. Then, the large-sample approximate variance of ÊL is
formulated as

Avar(ÊL) =
[
∂EL

∂θ

]T

Avar(θ̂)

[
∂EL

∂θ

]
. (2.17)

The specific forms of ∂EL
∂θ k

are given as

∂EL

∂λ0
= −√

2G

(
λ1√
2σλ1

)
,

∂EL

∂λ1
=

[
− λ1

σ 2
λ1

G

(
λ1√
2σλ1

)
+ G

(
λ1√
2σλ1

)
+ 1√

2σλ1

]
Ξ

+
√
2ρσλ0

σλ1

G

(
λ1√
2σλ1

)
,

∂EL

∂σλ0

=
√
2ρλ1

σ 2
λ1

G

(
λ1√
2σλ1

)
+ ρ,

∂EL

∂σλ1

= −G

(
λ1√
2σλ1

) √
2(ω + ρσλ0)

σ 2
λ1

+ Ξ

[
G

(
λ1√
2σλ1

)
λ2
1

σ 3
λ1

+ G

(
λ1√
2σλ1

)
− λ1√

2σ 2
λ1

]
,

∂EL

∂ρ
=

√
2σλ0λ1

σλ1

G

(
λ1√
2σλ1

)
+ σλ0 ,
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∂EL

∂σB
= 0,

∂EL

∂σ
= 0,

where Ξ =
√
2(W+ρσλ0σλ1−λ0σλ1 )

σλ1
.

By the above derivations, the standard error of the MLE for ÊL, saying ŜEÊL
, can

be evaluated as ŜEÊL
=

√
v̂ar(ÊL), where v̂ar(ÊL) is the MLE of Avar(ÊL) and can

be achieved by calculating Eq. (2.17) at θ̂ . Based on these results, we determine the
degradation test planning in the following section.

2.5 Degradation Test Planning

The degradation test plan depends on the parameters of the model, which are not
exactly known when we make the planning. Prior knowledge of the degradation
model including previous experience (such asmeasurements of the degradation burn-
in test, and degradation data from the field systems). In this case, expert knowledge
and design specifications are used to choose a set of parameters as planning infor-
mation before the planning begins, denoted by θ�. This set of parameters is known
as the planning information.

Given the planning information θ� and a test plan with specific number of units
as well as measurement schedule of each unit, we can compute the corresponding
fisher information matrix, which facilitates the evaluation of standard error for the
mean of lifetime and the quantile of the degradation distribution. For simple test plans
where all units are measured using the same schedule, a contour plot of the large-
sample approximate standard error of the interesting statistical test-plan properties
against the number of units n and the number of times each unit measured m is
recommended for test selection in [1]. For test plans where units are measured using
different schedules, the plots of standard errors against time are compared to choose
a reasonable test plan.

The planning problem, when there is a constraint on standard error of the sta-
tistical test-plan properties and a desire to minimize the cost of degradation test, is
often encountered. Generally speaking, the cost of a degradation test depends on
the number of the tested units, the measurement times on each unit, and the used
measurement method. Therefore, suppose that the relationship between the standard
error of measurement and the cost of measurement method is formulated as

cost(σ ) = C − κ exp (ησ ), (2.18)

where C, κ, η are positive constant coefficients which can be determined based on
experience.

FromEq. (2.18), it can benoted that a smallerσ corresponds to higher performance
of the measurement method. Equation (2.18) indicates that higher the performance
measure method is, the harder the performance of the measurement method can be
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further improved. This phenomenon is consistent with most of the industrial cases.
When the performance level of the degradation measurement is low, the cost will
increase rapidly to improve the precision of equipment. However, the rate of increase
slows down as the performance of the measurement equipment increases.

Based on the above discussions, the cost of a test plan can be formulated as

cost(n,m) = c1 + c2n +
n∑

k=1

cost(σ )mk, (2.19)

where m is the collection of the number of measurements of each unit, i.e.,
[m1, . . . ,mn]τ . c1, and c2 denote the fixed cost of running the test and the cost of
testing each unit, respectively. However, it is noted that other models describing the
relationship between the standard error of measurement and the cost of measurement
method can also be used, and the proposed framework in this chapter is not limited
to the model as (2.18).

Then, the problem of selecting test plan can be formulated as the following con-
strained optimization problem:

[m∗, n∗] = argmin
m,n

[cost(n,m)]

s.t. SE ≤ γ , (2.20)

where γ is the maximum acceptable value for ASE and can be determined according
to the specific yet practical requirement.

By optimizing (2.19), we can obtain the optimal test plan which gives the optimal
number of the tested units and the testing times for each unit.

2.6 An Illustrative Example

To illustrate the procedure for planning repeated degradation test with there-source
variability, we give an example of degradation test planning based on d0.1(t) in this
section. For the purpose of comparison, the same planning information of shelf-life
test design in example 3 from [1] together with a new setting of σB is used here. Since
d0.1(t) depends on time t, we first give a plot of contourslice of ŜEd̂0.1 in t and the
cost on the grid of m and n, where both large and small values of σ� are considered.
Suppose that σB = 0.3 for both cases. The individual costs of components in the test
are set as c1 = 15000, c2 = 1500, κ = 100, and η = 1.25. The maximum acceptable
γ is set as 0.8.

FromFigs. 2.1 and 2.2,we can observe that the large-sample approximate standard
error of d0.1(t), ŜEd̂0.1 , cannot be decreased by taking more measurements when the
error of measurement is small and there are only a few units, i.e., less than 5 units
are measured. In addition, in the case of small measurement error, ŜEd̂0.1 cannot
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Fig. 2.3 the contour plot of cost and ŜEd̂0.1
when σ� = 0.3

be decreased efficiently by adding more units, when each unit are not measured
sufficiently. In the case where the measurement error is large, ŜEd̂0.1 is more sensitive
with m and n, which is indicated by Fig. 2.1. ŜEd̂0.1 is larger when the temporal
variability is under consideration.

Figure2.1 also shows that ŜEd̂0.1 increases with time t due to the temporal vari-
ability and the unit-to-unit variability in the parameter of the degradation model.
Therefore, we choose the contourslice at a later time, say t = 20, to accomplish the
test design. The top 1 slice of Fig. 2.1 is amplified in Fig. 2.2, which indicates a test
plan where n∗ = 7 items should be measured at m∗ = 9 equally spaced times. For
such a test plan, ŜEd̂p = 0.7277 and cost(m∗, n∗) = 30696.

To further investigate the influence of themeasurement errors on the test planning,
we check a series of contour plot of both ŜEd̂p and the cost of test at different
levels of measurement errors. An interesting result is found as follows. After setting
σ� = 0.8, a test plan with n = 8, and m = 18 can achieve the precision level
of ŜEd̂0.1 = 0.7863 with a cost of 30856, which is very close to the constrained
optimum design when σ� = 0.3. A comparison between Figs. 2.3 and 2.4 suggests
that there are two strategies to achieve an acceptable level of ŜEd̂p under the same
constraint of budget. In other words, we can either spend less money on instruments
with relatively worse performance but take more measurements on more items, or
spend more money on instruments with better performance but cut down the number
of items and measurements. These results are useful to design the degradation test
plan for a practical product, particularly for vital products.
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Chapter 3
Specifying Measurement Errors for Required
Lifetime Estimation Performance

3.1 Introduction

Reliable and accurate lifetime estimates for key engineering assets have long been
a hot research topic attracting increasing attention in reliability and operational
research communities and practices. Because estimating the lifetime is important
and fundamental for maintenance schedules and logistic supports of assets, which
can lead to the extension of the asset life and lifecycle cost reduction [1–5]. In par-
ticular, accurate lifetime estimation can lead to timely and efficient maintenance
and logistic planning to reduce the extra costs due to unscheduled maintenance [6].
Therefore, the effectiveness of maintenance decisions and logistic planning relies
heavily on the performance of the estimated lifetime of the asset.

Traditionally, if the past failure data of the assets from either fields or experiments
are available, the lifetime can be estimated from the failure data by using likelihood-
based inference methods [7, 8]. However, for expensive and highly reliable assets,
failure data are scarce or limited. In practice, most failures of assets arise from a
degradation mechanism at work and there are measurable characteristics that can be
observed to deteriorate over time, such as the drift of gyros in the inertial navigation
platforms and the length of fatigue cracks in rotating bearings [9]. Therefore, health
monitoring data for these characteristics obtained from routine condition monitoring
(CM) is a feasible and low-cost alternative used for the lifetime estimation task.
However, perfect measurements in practical cases are impossible and the measured
health monitoring data are inevitably contaminated by the uncertainty during the
measurement process [10]. It is noted that, in many cases, degradation (e.g., fracture,
cracks, and electronic charge trapping) cannot be directly or perfectly measured
but is correlated to other measurable parameters, which may be able to reflect the
degradation condition of the monitored asset [11–14]. Here the term “degradation”
refers to the deterioration process of a certain characteristics of an asset with time.
Examples can be either performance degradation (e.g. light output from an LED)
or some measures of actual physical degradation (e.g. the length of a fatigue crack,
the drift of a gyro, and the account of erosion), which are closely correlated with

© National Defense Industry Press and Springer-Verlag GmbH Germany 2017
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the underlying physics-of-failure of the asset. Therefore, throughout this chapter, we
used the term “measured data” to represent the actually measured health monitoring
data which are associated with the hidden degradation of the asset.

As a source of uncertainty, measurement error (ME) resulting from the noise, dis-
turbance, non-ideal measurement instruments, etc., exists in almost all measurement
processes [14–17]. Hence, any investigation of the lifetime estimation problem via
degradation modeling must take the ME into account. From an engineering point of
view, the study of ME to reveal sources contributing to its variation or the charac-
terization of the distribution of ME has been well considered [10, 18, 19]. A variety
of literature has addressed various aspects of the relationship between the ME and
parameter estimation in the degradation models and the applications of lifetime esti-
mation in maintenance, including [3, 10, 14, 20, 21], etc. Recently, Peng and Tseng
in [14] investigated the effect of ME on lifetime estimation based on a Wiener process
with a random drift coefficient. Si et al. in [22] presented a comprehensive survey of
degradation data-based methods in the context of remaining useful life estimation.

The above-mentioned studies with respect to the effect of ME on performance
characteristics of lifetime estimation could be the solution to the problem of “the
performance of lifetime estimation due to the ME.” Here we call this problem as
a forward problem which focuses on the estimation from the measured data such
as parameter estimation, structure identification, reliability estimation, and lifetime
estimation, while the specification of ME is fixed. However, a reversed problem of
“the specification of the ME range in order to achieve a desirable lifetime estimation
performance” has not been addressed in the literature. This problem is related to the
usability of the measured data for estimating the lifetime and is called an inverse
problem in this chapter. It aims at specifying the ME characteristics to achieve the
desired lifetime estimation performance. If the performance of ME does not satisfy
certain requirements, the desirable performance of the estimated lifetime cannot be
ensured. In other words, the inverse problem seeks to obtain the limitations to the
ME in lifetime estimation under a given desired performance.

As a matter of fact, the inverse problem has its practical background, and reliabil-
ity practitioners or users in maintenance decision and logistic scheduling are often
interested in the various facets of the inverse problem. First, a practitioner in practice
may make maintenance decisions based on the specified performance characteristics
of lifetime estimation. He or she would like to expect accurate lifetime estimation
in order to plan maintenance and other logistic support activities in a timely and
cost-effective way. As discussed earlier, the higher quality the measured data has,
the better performance the lifetime estimation has. Hence if the measured data with
ME are used for such lifetime estimation task, he or she may wonder how to specify
the allowable limits to the distribution-related parameters (e.g., bias and standard
deviation) of ME in order to avoid unacceptable deterioration in the performance of
lifetime estimation. Second, to ensure a desired performance for lifetime estimation
based on the measured data, the ME should be controlled so that the performance
of lifetime estimation can be maintained. This refers to the design of the device that
takes the measurements. Third, when the lifetime estimated from the measured data
with ME is used for maintenance decision, the practitioner may wonder what effect
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of ME will have on the final decision, because inaccurate lifetime estimation can
lead to the increase of extra costs due to unscheduled maintenance. For example,
Scanff et al. in [6] provided a business case study using Eurocopter’s data from
manufactures of two standard microelectronic subsystems in commercial helicopter
to predict the lifecycle cost impact of using prognostics and health management.
The results indicated that modeling failure data as a Weibull distribution was cost-
effective as opposed to those whose failure data are represented by an exponential
distribution. This resulted from the fact that most lifetimes of assets were not expo-
nential. Together with these discussions, it can be concluded that the inverse problem
has its practical implication for engineering practices in the fields of maintenance
schedules and logistic supports requiring lifetime estimation from the measured con-
dition monitoring data, and can be regarded as the necessity analysis of ME for the
required lifetime estimation performance. However, all these very practical problems
are not presented and addressed in the literature.

In this chapter, we will consider such a reverse problem and attempt to give
some initial answers based on a Wiener process-based degradation model (WPDM),
commonly used for modeling degradation processes where the asset operates in time-
invariant environments and thus the rate of degradation can be approximated as a
constant for simplicity. We note that such rate can be time-dependent and nonlinear
(e.g., [9]), but it is not the focus of this chapter. WPDMs are popular degradation
models which have been widely studied and applied in a variety of contexts such
as LED lights, rotating bearings, and gyros drifts, and have tractable mathematical
properties ([18, 23–26] and a review [22]). As indicated before, we consider that
the actual degradation is unobservable, but some measured data which are related
to the degradation are available. Specifically, we consider a WPDM affected by
the ME for lifetime analysis and develop some expressions for permissible bias
and variance of the ME under required lifetime estimation performance. In order
to answer the aforementioned questions, the properties of the estimated lifetime
considering the effect of ME under WPDM are derived first. Then, we define some
measures to characterize the difference between lifetime estimations without/with
considering the ME. Through these measures, we formulate some requirements on
the ME for the sake of achieving certain required performance of lifetime estimation.
Based on the obtained results, we further analyze the effect of ME on an age-based
replacement decision, which is one of the most common and popular maintenance
policies in maintenance scheduling [27], and often used as a benchmark model for
demonstration. Finally, numerical examples and a case study are provided to illustrate
the implementation procedure and usefulness of the theoretical results, where we also
consider a comparison of condition-based replacement policy. The results indicate
that, by specifying the ME range given a desirable lifetime estimation performance,
it is possible to mitigate the conservativeness of maintenance decision so that the
effectiveness of the replacement decision can be improved such as extending the
operation cycle and reducing the long run average cost per unit time.

The rest of the chapter is organized as follows. In Sect. 3.2, we provide the
fundamental results of WPDM for lifetime estimation. In Sect. 3.3, the proper-
ties of WPDM with ME are derived. In Sect. 3.4, given the required performance
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characteristics for lifetime estimation, we analyze the allowable bias and standard
deviation of ME. In Sect. 3.5, we analyze the effect of ME on an age-based replace-
ment decision. Numerical examples and a case study are provided in Sect. 3.6.

3.2 Properties of the WPDM

In this chapter, let {X (t), t ≥ 0} denote the stochastic degradation process which is
correlated with the underlying physics-of-failure of the asset. A linear WPDM is
typically used for modeling degradation processes, where the cumulative damage
does not have a significant effect on the rate of degradation [28]. So far, this kind
of degradation model has been widely adopted to characterize the degradation of a
variety of assets (e.g., LED lights, rotating bearings, gyros, automotive wheels, etc.)
to estimate the lifetime [22, 29, 30]. Therefore, we model the degradation process
{X (t), t ≥ 0} as a Wiener process in this chapter. In general, a Wiener-process-based
degradation process {X (t), t ≥ 0} can be represented by

X (t) = λt + σB B(t), (3.1)

where X (t) is the actual degradation at time t , λ is the drift coefficient, σB > 0 is
the diffusion coefficient, and B(t) is the standard Brownian motion.

We now illustrate how to estimate the lifetime based on Eq. (3.1). From [31], we
use the concept of the first hitting time (FHT) to define the lifetime. Namely, when
the degradation process {X (t), t ≥ 0} reaches a pre-set critical level w, the asset is
declared to be non-usable. This critical level is known as failure threshold, which is
often defined by the industrial standard such as the International Standards Organi-
zation (ISO) (e.g., the ISO 2372 and ISO 10816 for defining acceptable vibration
threshold levels). Therefore, it is natural to view the event of lifetime termination as
the point when the degradation process {X (t), t ≥ 0} crosses threshold level wfor
the first time. From the FHT, the lifetime T can be defined as

T = inf { t : X (t) ≥ w| X (0) < w} . (3.2)

with the probability density function (PDF) fT (t) and cumulative distribution func-
tion (CDF) FT (t).

It is well-known that the FHT of the Wiener process crossing a constant threshold
follows an inverse Gaussian distribution [32]. Accordingly, we have the PDF of the
lifetime T ,

fT (t) = w√
2π t3σ 2

B

exp

(
− (w − λt)2

2σ 2
Bt

)
, (3.3)

and the CDF
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FT (t) = 1 − Φ

(
w − λt

σB
√
t

)
+ exp

(
2λw

σ 2
B

)
Φ

(−w − λt

σB
√
t

)
, (3.4)

with the mean and variance as follows

E(T ) = w

λ
, var(T ) = wσ 2

B

λ3
. (3.5)

However, in practical cases, the true degradation cannot be observed directly [11–13].
Such unobservability is largely due to the noise, disturbance, non-ideal measurement
instruments, etc. [15–17]. In this sense, it is better to let the true degradation process
be a latent process, which is continuously fluctuating but not directly observable.
For example, when measuring a temperature using a thermometer, the height of the
column of mercury is the observed variable, which may be linearly related to the
actual unknown temperature. For the same measured variable, different measuring
devices may be used. Thus infrared-based devices may also measure the temperature,
possibly with a much higher accuracy than that of the common thermometer. They
therefore have different MEs, but both are driven by the latent temperature. The
measurement process will, of course, in turn affect lifetime estimation. In this chapter,
we consider this latent degradation process with measured health monitoring data
contaminated by the ME.

3.3 Properties of the WPDM with the ME

If variable X (t) representing the degradation at time t is monitored via some measure-
ment process, then the actual observed variable Y (t) is a function of X (t). Following
the works in statistical process control [33], we assume a linear relationship between
them, namely,

Y (t) = A + BX (t) + ε (3.6)

where ε is normally distributed with zero mean and standard deviation σ ; A and B
are parameters. Assume X (t) is the true degradation characteristics to be monitored,
represented by Eq. (3.1). The observed quantity Y (t) is then distributed normally.
It is obvious that if A = 0 and B = 1, no bias is introduced in measuring X (t)
through Y (t), and the associated standard deviation of ME is σ . In this chapter, we
only consider the case that B = 1 in Eq. (3.6) for simplicity. Together with Eq. (3.1),
we get,

Y (t) = A + X (t) + ε = A + λt + σB B(t) + ε, (3.7)

where A and σ are considered as the bias and standard deviation of ME, respectively.
From the FHT concept, the lifetime Te associated with {Y (t), t ≥ 0} can be defined

as
Te = inf { t : Y (t) ≥ w| Y (0) < w} . (3.8)

with the PDF fTe(t) and CDF FTe(t).
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Obviously, the estimated lifetime Te from Y (t) will be different from the lifetime
T . Since X (t) is not observable, and therefore in practice, only Y (t) is used to define
the lifetime. In the following, based on Eq. (3.7) and the definition given in Eq. (3.8),
we try to obtain the distribution of Te. The following results are presented to simplify
the derivation of the distribution of Te.

Lemma 3.1 If Y ∼ N (μ1, σ
2
1 ), then EY [Φ(Y )] can be formulated as EY [Φ(Y )] =

Φ(μ1

/√
σ 2

1 + 1).

Proof Using the property of the conditional expectation, we directly have

EY [Φ(Y )] = E
[
E(I{Z≤Y }

∣∣ Y )
∣∣ Y ] = Pr(Z ≤ Y ) = Pr(Z − Y ≤ 0) = Φ(μ1

/√
σ 2

1 + 1),

(3.9)
where Φ(·) denotes the standard normal CDF, I{Z≤Y } is an indicator function, and Z
is a standard normal random variable and independent of Y . Then, we have Z −Y ∼
N (−μ1, σ

2
1 + 1). This completes the proof.

Using Lemma 3.1 and expectation manipulations, we obtain the following con-
clusions after some lengthy derivations.

Lemma 3.2 If Z ∼ N (μ, σ 2), and w, ϑ, B, D ∈ �,C ∈ �+, then the following
hold:

(1) EZ
[
exp{ϑZ}Φ(C + DZ)

] = exp

{
ϑ2

2
σ 2 + ϑμ

}
· Φ

(
C + Dμ + ϑDσ 2

√
1 + D2σ 2

)
,

(3.10)

(2) EZ
[
(ϑ − Z) · exp

{−(B − Z)2/2C
}] =

√
C

σ 2 + C

(
ϑ − σ 2B + μC

σ 2 + C

)
×

exp

{
− (B − μ)2

2
(
σ 2 + C

)
}

. (3.11)

Thanks to the results in Lemma 3.2, the lifetime estimation results corresponding
to {Y (t), t ≥ 0} can be summarized as follows:

Theorem 3.1 For Eq. (3.7) and the definition in Eq. (3.8), the followings hold:

(1) fT e(t) = λσ 2 + σ 2
B(w − A)√

2π(σ 2 + σ 2
Bt)

3
exp

{
− (w − A − λt)2

2
(
σ 2 + σ 2

Bt
)
}

, (3.12)

(2) FTe(t) = 1 − Φ

⎛
⎝w − A − λt√

σ 2
Bt + σ 2

⎞
⎠ + exp

{
2λ(w − A)

σ 2
B

+ 2λ2σ 2

σ 4
B

}
×
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Φ

⎛
⎝−w − λt + A − 2λσ 2/σ 2

B√
σ 2
Bt + σ 2

⎞
⎠ , (3.13)

(3) E(Te) = w − A

λ
, var(Te) = λσ 2 + (w − A) σ 2

B

λ3
. (3.14)

Proof see Appendix A.

There are three observations regarding the results in Eqs. (3.3)–(3.5) and
Theorem 3.1. The first observation is that the measurement uncertainty can propagate
into the lifetime distribution in Theorem 3.1, and thus we account for the uncertainties
in the stochastic degradation process and its measurement process simultaneously.
The second is that the results in Theorem 3.1 can reduce to the results in Eqs. (3.3)–
(3.5) by setting A = 0 and σ 2 = 0. Last, the most commonly used properties of T
and Te, i.e., mean and variance, can both be obtained in explicit forms. This can sig-
nificantly facilitate the subsequent analysis. In the following section, we will present
allowable bias and standard deviation for ME, given the specified process parameters
and required performance characteristics for lifetime estimation.

3.4 Permissible ME Parameters for Lifetime Estimation

3.4.1 Performance Measures to Quantify the Difference
in Lifetime Estimation with Versus Without the ME

We first introduce the following definitions to measure the difference in lifetime
estimations with versus without the ME. To characterize the variability existing in
a random variable, there are two frequently adopted measures, i.e., variance and
coefficient of variation (CV), where the variance of a random variable is often used
as a measure of spread or dispersion, but the CV of a random variable is used as
a measure of scale invariant dispersion since the mean of the random variable is
considered in the definition of the CV while the mean is a measure of the location of
the distribution of a random variable.

As discussed before, the CV is often used to measure scale invariant dispersion
existing in a random variable [34], e.g., Z . Specifically, the CV is defined as the ratio
of the standard deviation to the mean of Z . It is the inverse of the signal-to-noise
ratio, formulated as

CV (Z) =
√
var(Z)

|E(Z)| . (3.15)

Since the CV can measure the relative variability existing in any random variable,
it is naturally expected that the difference between the CVs of Te and T is rela-
tively small if the effect of ME is small. This signifies that the measurement process
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{Y (t), t ≥ 0} is accurate enough. In order to quantify their difference using the CV
measure, we define the relative increase ratio Rcv(Te, T ) of the CVs between Te and
T as follows:

Rcv(Te, T ) = |CV (Te) − CV (T )|
CV (T )

. (3.16)

From Eq. (3.16), we can observe that the less Rcv(Te, T ) is, the more accurate
the estimated lifetime from {Y (t), t ≥ 0} is, and vice versa. Therefore, Rcv(Te, T )

can serve as a measure to quantify the difference between Te and T . As such, it is
expected that Rcv(Te, T ) should be less than a given value Cm ≥ 0 if the ME has less
influence on the estimated lifetime, i.e., 0 ≤ Rcv(Te, T ) ≤ Cm . In other words, we
expect that the estimated lifetime through measurement process {Y (t), t ≥ 0} can
approach the estimation from the error-free process {X (t), t ≥ 0} accurately enough.

Similarly, we can also define the relative increase ratio Rvar (Te, T ) of the variances
between Te and T as follows:

Rvar (Te, T ) =
∣∣√var(Te) − √

var(T )
∣∣

√
var(T )

, (3.17)

Similarly, it is expected that Rvar (Te, T ) should satisfy vmin ≤ Rvar (Te, T ) ≤ vmax

if the ME has less influence on the lifetime estimation, where vmax ≥ vmin ≥ 0 are
lower and upper limits. Note that the less Rvar (Te, T ) is, the more accurate the
estimated lifetime from {Y (t), t ≥ 0} is, and vice versa. Therefore, Rcv(Te, T ) can
serve as the second measure to quantify the difference between Te and T .

In this chapter, we utilize the above measures to analyze the requirements for ME
under certain performance requirements regarding lifetime estimation. Specifically,
we present the allowable bias and standard deviation for ME—A and σ , given the
specified process parameters (including λ and σB) and the required performance
characteristics for lifetime estimation. Note that, to specify the performance require-
ment for ME, we should first determine the required performance characteristics,
i.e., Cm , vmin, and vmax. Generally, small values of Cm , vmin, and vmax correspond to
the high accuracy of the estimated lifetime, and vice versa. Therefore, these quan-
tities can be determined according to the required accuracy for lifetime estimation
and are context-specific. In the following, we investigate how to specify the perfor-
mance requirement for ME given Cm , vmin and vmax, and mainly focus on the case of
A ≤ w,w ≥ 0, and λ > 0 unless otherwise specified. Other cases can be analyzed
in a similar manner and thus are omitted.

3.4.2 Permissible ME Parameters Using the Relative
Increase Ratio of the CV

According to the relative increase ratio Rcv(Te, T ) based on the CV measure, the
following theorem can be obtained to specify the requirement for ME.
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Theorem 3.2 From the CV measure, if it is required 0 ≤ Rcv(Te, T ) ≤ Cm, the
following conditions about A and σ should be satisfied,

⎧⎨
⎩
i f λσ 2 + σ 2

B A (w − A) /w ≥ 0, then λσ 2 + σ 2
B (w − A)

[
1 − (w − A)

(Cm+1)2

w

]
≤ 0,

i f λσ 2 + σ 2
B A (w − A) /w < 0, then λσ 2 + σ 2

B (w − A)
[
1 − (w − A)

(Cm+1)2

w

]
> 0.

.

(3.18)

Proof see Appendix.

Several observations regarding Theorem 3.2 need to be noted. First, given the
performance requirement (i.e. Cm) and process parameters (including λ and σB),
Theorem 3.2 can specify the feasible area of A and σ 2 in a two-dimension plane.
In other words, if Eq. (3.18) is violated for all feasible values of A and σ 2, the
required 0 ≤ Rcv(Te, T ) ≤ Cm cannot be achieved. Secondly, in Eq. (3.18), the ME
variance is expressed in combination with the bias, and the bias can be expressed in
terms of the ME variance, and vice versa. Therefore, given that Rcv(Te, T ) should
not exceed the allowable limit Cm , either A or σ 2 may arbitrarily be determined as
both these sets of expressions have been derived from a single equation. Third, the
expressions developed above involve two parameters, λ and σB , which need to be
determined. We assume that these parameters are known or can be estimated from the
historical degradation data. In other words, our primary focus is on how to specify the
permissible ME when using degradation data-based lifetime estimation approaches.

Now we consider two special cases: one is for the case of A = 0 and the other is
for σ 2 = 0.

Corollary 3.1 For the caseof A = 0, according to theCVmeasure0 ≤ Rcv(Te, T ) ≤
Cm, the following conditions about σ 2 should be satisfied,

0 ≤ σ 2 ≤ σ 2
Bw

(
C2
m + 2Cm

)
λ

. (3.19)

Corollary 3.2 For the case of σ 2 = 0, from the CV measure 0 ≤ Rcv(Te, T ) ≤ Cm,
the following conditions about A should be satisfied,

0 ≤ A ≤ w(2Cm + C2
m)

(Cm + 1)2
. (3.20)

Obviously, in the above two extreme cases, the required values of A and σ 2 can
be expressed in a simple and explicit manner, and thus may be very easy to apply in
practice.

Now suppose that we wish to determine permissible values of the bias for
any desirable ME variance. Obviously, the allowable values can be derived from
Eq. (3.18). Consequently, one can plot Eq. (3.18), where the horizontal axis repre-
sents the ME bias, and the vertical axis represents the corresponding permissible
variance. This graph will depict the trade-off between the bias and variance of ME.
Points on the curve indicate that the upper bound has been reached (i.e. Eq. (3.18)
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(a) Cm = 0.2

(b) Cm = 0.1

Fig. 3.1 Permissible ME parameters under the relative increase ratio of the CV

is maintained as equality). Conversely, points inside the area bounded by the curve
represent the permissible ME bias and variance that have not reached the limiting
values specified by Eq. (3.18). In other words, the deviation between the estimated
lifetime for Te and the nominal for T is smaller than the requirement Cm . Such plot
is illustrated in Fig. 3.1, which is related to the numerical example in this chapter.

It is interesting to note that the permissible area of A and σ 2 becomes narrower
as Cm decreases. To achieve a higher accuracy of lifetime estimation, the stricter
the required performance of lifetime estimation is, the less error of the measurement
process is required.
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3.4.3 Permissible ME Parameters Using the Relative
Increase Ratio of the Variance

From the relative increase ratio Rvar (Te, T ) of the variance defined in Eq. (3.17), the
following theorem can be obtained to specify the requirement for ME.

Theorem 3.3 From the measure using the variance, in order to satisfy vmin ≤
Rvar (Te, T ) ≤ vmax, the following conditions about A and σ 2 should be satisfied,
{
i f λσ 2 − Aσ 2

B ≥ 0, thenwσ 2
B(2vmin + v2

min) ≤ λσ 2 − Aσ 2
B ≤ wσ 2

B(2vmax + v2
max),

i f λσ 2 − Aσ 2
B < 0, thenwσ 2

B(v2
max − 2vmax) ≤ λσ 2 − Aσ 2

B ≤ wσ 2
B(v2

min − 2vmin).
(3.21)

Proof see Appendix.

Similar to Theorems 3.2, 3.3 also specifies the feasible area of parameters A and
σ 2 in a two-dimension plane, given the performance requirements, vmin and vmax, and
process parameters λ and σB . From Theorem 3.3, we have the following corollaries.

Corollary 3.3 For the case of A = 0, by the variancemeasure vmin ≤ Rvar (Te, T ) ≤
vmax, the following conditions about σ 2 should be satisfied

wσ 2
B

λ

(
v2

min + 2vmin
) ≤ σ 2 ≤ wσ 2

B

λ

(
v2

max + 2vmax
)
. (3.22)

Corollary 3.4 For the case of σ 2 = 0, by the variance measure vmin ≤ Rvar (Te, T )

≤ vmax, the following conditions about A should be satisfied

{
w(2vmin − v2

min) ≤ A ≤ w(2vmax − v2
max), A ≥ 0

−w(v2
max + 2vmax) ≤ A ≤ −w(v2

min + 2vmin), A < 0
. (3.23)

Similar discussions such as those in Sect. 4.2 can be presented based on the analy-
sis of Eqs. (3.21), (3.22) and (3.23) through the variance measure, Rvar (Te, T ). Also,
a plot to determine the permissible ME parameters is illustrated in Fig. 3.2, which
is related to the numerical example in this chapter. In addition, we also observe that
the permissible area of A and σ 2 becomes narrower as vmax decreases in this case.

Remark 3.1 It is noted that, to use Theorems 3.2 and 3.3 in practice, A and σ 2 should
be estimated from the measured data which are in turn affected by the precision of
the measuring device as well as by the selected estimation method. To address this
problem, it is better to use the confidence intervals of the estimated A and σ 2 to
verify whether or not Theorems 3.2 and 3.3 are satisfied, rather than only using their
point estimates. We will use this method in the subsequent case study.

http://dx.doi.org/10.1007/978-3-662-54030-5_4
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(a) vmin = 0,vmax = 0.4

(b) vmin = 0,vmax = 0.2

Fig. 3.2 Permissible ME parameters under the relative increase ratio of the variance

3.5 Effect of Lifetime Estimation with or Without ME
on an Age-Based Replacement Decision

In this section, based on the estimated lifetime distribution, we take an age-based
replacement policy to analyze the effect of ME on a maintenance decision. The rea-
son for considering an age-based replacement policy is that it is one of the most
common and popular maintenance policies and often used as a benchmark model
for demonstration [23, 25–27, 34, 35]. Under this policy, an asset is always replaced
upon failure (the degradation hits the failure threshold for the case considered in this
chapter) or upon reaching a pre-determined age τ , whichever occurs first, where τ is
a decision variable. After replacement, the replacement process renews. Therefore,
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the replacement process is a renewal process renewed by each replacement, either
scheduled or unexpected. The long run average cost per unit time under this replace-
ment policy can thus be computed based on the theory of renewal reward processes
[36].

We first consider the case without the ME and denote by Tr the corresponding
time interval between two sequential replacements, also called as a replacement
cycle. Then the long run average cost per unit time under the age-based replacement
policy can be expressed based on the renewal reward theory as

CR(τ ) = E [C]

E (Tr |w)
= cp F̄T (τ ) + c f FT (τ )∫ τ

0 F̄T (t)dt
, (3.24)

where E [C] is the expected cost per cycle, E (Tr |w) is the expected cycle length,
cp is the preventive replacement cost, and c f is the failure replacement cost with
cp < c f . In addition, FT (t) is the CDF of the lifetime obtained by Eq. (15.4) and
F̄T (t) = 1 − FT (t). Therefore, the optimal replacement time τ ∗ is the time that
minimizes Eq. (3.24).

Similarly, we further consider the case with the ME and denote by Ter the cor-
responding time interval between two sequential replacements. Then the long run
average cost per unit time can be expressed as

CRe(τ ) = E [Ce]

E (Ter |w)
= cp F̄Te(τ ) + c f FTe(τ )∫ τ

0 F̄Te(t)dt
, (3.25)

where E [Ce] is the expected cost per cycle, E (Ter |w) is the expected cycle length,
and FTe(t) is the CDF of the lifetime with the ME obtained by Eq. (3.13). Accordingly,
the optimal replacement time τ ∗

e is the time that minimizes Eq. (3.25).
In order to shed a light on the effect of ME on the replacement decision under the

age based replacement policy, we present the following theorem. Its proof is given
in the Appendix.

Theorem 3.4 Consider an asset whose degradation process without the ME follows
a Wiener process {X (t), t ≥ 0} as Eq. (3.1) or a Wiener process affected by the ME,
{Y (t), t ≥ 0}, as Eq. (3.7). The asset is replaced upon failure (the degradation hits
the failure threshold w) or upon reaching a pre-determined age τ , whichever occurs
first. Then the followings hold:

(1) E (Tr |w) = τ F̄IG

(
τ ; w

λ
, w2

σ 2
B

)
+ w

λ
F̄IG

(
w2

τλ2 ; w
λ
, w2

σ 2
B

)
, and E (Ter |w) = EA′

[E (Tr |w)], where F̄IG (t;μ, θ) = 1 − Φ
(√

θ
t

(
t
μ

− 1
))

+ exp
(

2θ
μ

)
Φ(

−
√

θ
t

(
t
μ

+ 1
))

and A′ ∼ N (A, σ 2).

(2) If σ 2 = 0, Te is stochastically decreasing in A; particularly T ≥st Te when
A ≥ 0.

http://dx.doi.org/10.1007/978-3-662-54030-5_15
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(3) If σ 2 = 0 and A ≥ 0, then E (Ter |w) ≤ E (Tr |w), C Re(τ ) ≥ CR(τ ), and
CRe(τ

∗
e ) ≥ CR(τ ∗), where τ ∗ and τ ∗

e are the solutions of minimizing Eqs. (3.24)
and (3.25), respectively.

Theorem 3.4 shows the effect of ME on the lifetime estimation and an age based
replacement decision, including the expected cycle length, and the long run average
cost per unit time. Particularly, we can find that, if σ 2 = 0 and A ≥ 0, the expected
cycle length will be shortened and instead a greater long run average cost per unit
time will be incurred with the ME effect, compared with the case without the ME
effect. This implies that the replacement decision made under the measured data
with the ME effect is conservative and thus is not economically optimal. Therefore,
by specifying the ME range given a desirable lifetime estimation performance, it
is possible to mitigate such conservativeness and extend the operation cycle of the
asset so that the effectiveness of the replacement decision is improved. For the case
σ 2 
= 0, we show the effect of ME on the replacement decision in the next section
by a real case study.

3.6 Experimental Studies

3.6.1 A Numerical Illustration

We first provide several numerical examples to demonstrate the main results about the
required performance characteristics of ME for lifetime estimation. For illustrative
purposes, we consider the parameters for the degradation process as λ = 0.5,w = 5
and σ 2

B = 0.04. To give an intuitive impression on the effect of ME, we here consider
three special cases. The first case is that we let A = 0 and increase σ 2 from 0 to 0.8;
the second is that we let σ 2 = 0 and increase A from 0 to 1.6; and the third is that
we consider the increases of both A and σ 2. The corresponding PDFs and CDFs of
the lifetime for these three cases are illustrated in Figs. 3.3, 3.4 and 3.5, respectively.

It can be observed from Fig. 3.3 that, when A = 0, the estimated lifetime is
unbiased but the variance of the estimated lifetime from the measurement process
{Y (t), t ≥ 0} increases with σ 2. This is intuitively understandable since it is assumed
that the ME is independent of {B(t), t ≥ 0} and thus the uncertainty within the
measurement process is larger than that within the degradation process {X (t), t ≥ 0}.
At the same time, increasing σ 2 first leads to the decrease of the reliability function
and then leads to the increase of the reliability function. Implied by Fig. 3.4, when
σ 2 = 0, the estimated mean lifetime decreases and at the same time the variance
of the estimated lifetime decreases as A increases (note that we limit A to be non-
negative in above numerical examples). This can be well-explained since in this case
increasing A makes the lifetime decrease and thus it may be not possible to have a
large variance for a small lifetime. Figure 3.5 illustrates the compared results when
both A and σ 2 increase.
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Fig. 3.3 Comparisons between estimated lifetime distributions and reliability functions with and
without ME (A = 0), respectively

The above results give an intuitive picture of how the ME affects the estimated
lifetime. In the following, we give an example under λ = 0.5,w = 5 and σ 2

B = 0.04
to illustrate how to determine the permissible ME parameters according to results
in Sect. 3.4. For an illustrative purpose, we assume that the required performance
characteristics for lifetime estimation are Cm = 0.2, vmin = 0, and vmax = 0.2.

First, based on the CV measure, when it is required thatCm = 0.2, the permissible
values of A and σ 2 can be determined from Theorem 3.2, which is illustrated in
Fig. 3.1. It can be found that decreasing Cm will make the permissible area of A and
σ 2 narrower. Particularly, when A = 0, it is required that 0 ≤ σ 2 ≤ 0.176, and
when σ 2 = 0, it is required that 0 ≤ A ≤ 1.5278. These results are calculated from
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Fig. 3.4 Comparisons between estimated lifetime distributions and reliability functions with and
without ME (σ 2 = 0), respectively

Eqs. (3.19) and (3.20), respectively, and are shown in Fig. 3.1. Second, based on the
variance measure, when it is required that vmin = 0 and vmax = 0.2, the permissible
values of A and σ 2 can be determined from Theorem 3.3 as well (see Fig. 3.2). It
can be found that increasing vmax will make the permissible area of A and σ 2 wider.
Particularly, when A = 0, it is required that 0 ≤ σ 2 ≤ 0.176. When σ 2 = 0, we have
−2.2 ≤ A ≤ 0. These results are calculated from Eqs. (3.22) and (3.23), respectively,
and are shown in Fig. 3.2. The main results of the above cases can be summarized in
the following Table 3.1.

It is noted that, when A = 0, the permissible values of σ 2, determined by
Rcv(Te, T ) are the same as the results based on Rvar (Te, T ). Because vmax = Cm ,
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Fig. 3.5 Comparisons between estimated lifetime distributions and reliability functions with and
without ME (with the increases of both A and σ 2), respectively

then Rcv(Te, T ) = Rvar (Te, T ) when A = 0. Namely, the estimate is unbiased in
this case.

3.6.2 The Case Study

In this section, we provide a practical case study for gyros in an inertial navigation
system (INS) to illustrate the application of the developed approach.
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Table 3.1 Permissible parameters for ME under the required performance of lifetime estimation

Measures Required performance A = 0 σ 2 = 0

Rcv(Te, T ) Cm = 0.2 0 ≤ σ 2 ≤ 0.176 0 ≤ A ≤ 1.527 8

Rvar (Te, T ) vmin = 0, vmax =
0.2

0 ≤ σ 2 ≤ 0.176 −2.2 ≤ A ≤ 0

δ(Te, T ) δm = 0.9 k=40
k=20 0 ≤ σ 2 ≤ 0.093 8 −8.881 8e−16≤A≤2.519 7

−8.881 8e−16≤A≤3.728 8

As a key device of the INS in weapon systems and space equipment, an inertial
platform plays an important and irreplaceable role in the INS. The sensors fixed in
the inertial platform include three gyros and three accelerometers, which measure
angular velocity and linear acceleration, respectively. When the inertial platform is
operating, the wheels of gyros rotate at very high speeds and can lead to the rotation
axis wear and finally result in gyros’ drift. In our case, the gyro fixed on the inertial
platform is a mechanical structure having two degrees of freedom from the driver
and sense axis. As the wear is accumulated, the bearing of the gyro’s electric motor
will become deformed and such deformation leads to the drift of the gyro. The
increasing drift finally results in the failure of gyro and then the inertial platform.
Statistical analysis shows that almost 70% of the failures of inertial platforms result
from gyros’ drift. It can be observed that the failure of the gyro and inertial platform
is largely resulted from the bearings as the case of rolling element bearings which are
extensively investigated in the literature. However, the difference of our case is in that
we use the drift data of gyros to estimate the lifetime rather than the vibration data
as rolling element bearings. In our case, we cannot obtain the vibration data since it
is not allowed to fix the vibration sensors in the inertial platform. As such, the drift
of gyros is often used as a performance indicator to evaluate the health condition of
the inertial platform and schedule maintenance activities. For an illustrative purpose,
we provide an illustration of a deformed bearing of the gyro’s electric motor (see
Fig. 3.6), which is obtained by scanning electron microscopy S-3700N. It can be
found that the maximum length of the metal flake is 155 um. Such deform is reflected
by the drift data of gyros, which can be monitored and measured.

In this study, we assume that the CM values of gyro’s drift reflect the performance
of the inertial platform, and the larger the monitored drift is, the worse the perfor-
mance is. For our monitored INS, we collected ten failure data of gyros in total,
which are summarized in Table 3.2. For illustration, the collected monitoring data of
six gyros are illustrated in Fig. 3.7 with regular CM intervals 2.5 h.

Table 3.2 Failure data of gyros

Gyros No. 1 2 3 4 5 6 7 8 9 10

Failure
time (h)

145.6 175 160.3 197.5 150.5 157.5 230 137.5 192.5 267.5
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Fig. 3.6 The collected drifting data of six failed gyros

In the practice of the INS health monitoring, it is usually required that the gyro’s
drift measurement should not exceed 0.37 ◦/h, i.e., w = 0.37 ◦/h. This threshold is
predetermined at the design stage and is strictly enforced in practice since an INS is
a critical device used in the navigated weapon system.

Now, we use the above collected data to demonstrate theoretical results developed
in this chapter. First, we use the lifetime data in Table 3.2 and lifetime distribution
in Eq. (3.3) to determine λ and σ 2

B . Adopting the maximum likelihood estimation
method, the estimates of λ and σ 2

B , and their standard errors (std) and confidence
intervals (CI) can be obtained, as summarized in Table 3.3.

Based on the estimated λ and σ 2
B , and the collected drift data of gyros as shown in

Fig. 3.7, the parameters of the ME existing in the monitoring data can be estimated
using the maximum likelihood estimation method presented in [18]. Accordingly,
the standard errors and confidence intervals can also be obtained, as summarized in
Table 3.3. From Table 3.3, we can observe the uncertainty existing in the estimated
parameters. To quantify the effect of the uncertainty in parameter estimations, the
standard errors and 95% confidence intervals of the mean lifetime with the ME, the
replacement cost and replacement time are also calculated as shown in Table 3.3,
where the replacement cost and replacement time are obtained through minimiz-
ing Eq. (3.25) using the Nelder–Mead Simplex method in MATLAB toolbox under
cp = 6,000 RMB and c f = 10,000 RMB, which are specified according to the pur-
chase cost of gyro and engineering practice of gyro. From these computation results,
we can find that the uncertainty in parameter estimations will have some impacts on
the accuracy of the lifetime estimation and replacement decisions, and thus statistical
part related to parameter estimation is an important issue. However, the issue about
parameter estimation is beyond the focus of this chapter and instead the goal of this
chapter is to specify the ME range to achieve a desirable lifetime estimation perfor-
mance under the given model parameters. The details of the parameter estimation
method can be found in [18].
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(a) Cm = 0.1

(b) vmin = 0, vmax = 0.1

Fig. 3.7 Permissible ME parameters for gyros’ drift data

Considering that the INS is a critical device used in the navigated system, it is
expected that the estimated lifetime from the drift data contaminated by the ME
should be accurate sufficiently and hence we set the required performance character-
istics for lifetime estimation as Cm = 0.1, vmin = 0, and vmax = 0.1. Therefore, the
permissible values of A and σ 2 can be determined from Theorems 3.2 and 3.3, which
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Table 3.3 Estimates of the parameters, mean lifetime, replacement cost, and replacement time

MLE std 95% CI

Lower limit Upper limit

λ 2.04e-3 1.32e-4 1.96e-3 2.12e-3

σ 2
B 3.15e-5 1.41e-5 2.28e-5 4.02e-5

A 1.32e-2 2.10e-3 1.30e-2 1.34e-2

σ 2 1.35e-4 2.52e-5 1.33e-4 1.37e-4

Mean lifetime (h) 174.9 36.48 168.1 182.3

Optimal cost (RMB/h) 35.37 2.56 32.29 37.94

Optimal replacement time (h) 126.9 4.32 124.3 133.5

are illustrated in Fig. 3.7. In Fig. 3.7, the asterisk denotes the maximum likelihood
estimates of A and σ 2, and the box corresponds to the 95% confidence intervals of
the estimated A and σ 2. It can be observed that the 95% confidence intervals of the
estimated A and σ 2 are located in the permissible ranges of A and σ 2. Specifically, it
is calculated that Rcv(Te, T ) = 0.0307 and Rvar (Te, T ) = 0.006 for this case study.
Obviously, Rcv(Te, T ) < Cm and vmin < Rvar (Te, T ) < vmax. These analyses imply
that the required performance for lifetime estimation can be satisfied in this case
study under the given Cm , vmin, and vmax. In the subsequent comparisons, we use the
maximum likelihood estimations of the parameters for illustration.

To have a closer look at the effect of ME on the age-based replacement decision, we
compare the optimal replacement times and the corresponding long run average costs
per unit time with/without the ME effect, respectively. By implementing the Nelder-
Mead Simplex method in Matlab toolbox, Eqs. (3.24) and (3.25) can be minimized
under the previously specified cp and c f . As a result, for the case without the ME
effect, the optimal replacement time is τ ∗ = 132.4 hours and the optimal long run
average cost per unit time is CR(τ ∗) = 33.72 RMB/hour. For the case with the
ME effect, it is obtained that τ ∗

e = 126.9 hours and CRe(τ
∗
e ) = 35.37 RMB/hour.

From these results, it is found that the optimal replacement time τ ∗
e is earlier than τ ∗

4.15%, and instead the corresponding optimal long run average cost per unit time is
increased by 4.89%. This shows that under the age based replacement policy using τ ∗

e
for replacement will render the earlier replacement and increase the operation cost.
However, in this case study, the distribution-related parameters of ME, i.e. A and
σ 2, are located in their permissible ranges, as explored previously. Thus the effect
of ME on the replacement decision is not significant.

To further exploit the effect of ME on the replacement decision, we calculate
Rcv(Te, T ), Rvar (Te, T ), τ ∗

e , and CRe(τ
∗
e ) under different pairs of (A, σ 2) for illus-

trative purposes. The main calculation results are summarized in Table 3.4.
From Table 3.4, we can observe that the appearance of ME will shorten the oper-

ation cycle length and incur a greater long run average cost per unit time compared
with the case without the ME effect (corresponding to the case with σ 2 = 0 and
A = 0), and thus lead to unnecessary economical loss. Particularly, when σ 2 = 0,
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Table 3.4 Rcv(Te, T ), Rvar (Te, T ), τ ∗
e , and CRe(τ

∗
e ) under different pairs of (A, σ 2)

σ 2

0 0.000 28 0.000 56 0.001 12 0.002 24

A A = 0 Rcv(Te, T ) 0 0.024 2 0.047 9 0.093 6 0.179 9

Rvar (Te, T ) 0 0.024 2 0.047 9 0.093 6 0.179 9

τ ∗
e 132.4 131.9 131.5 130.8 129.9

CRe(τ
∗
e ) 33.721 2 34.065 3 34.399 9 35.042 3 36.231 6

A = 0.01 Rcv(Te, T ) 0.013 8 0.039 0 0.063 6 0.111 2 0.200 8

Rvar (Te, T ) 0.013 6 0.010 9 0.034 9 0.081 2 0.168 4

τ ∗
e 128.5 128.0 127.6 127.0 126.2

CRe(τ
∗
e ) 34.817 7 35.186 7 35.545 1 36.232 1 37.500 6

A = 0.02 Rcv(Te, T ) 0.028 2 0.054 5 0.080 1 0.129 7 0.222 8

Rvar (Te, T ) 0.027 4 0.002 5 0.021 7 0.068 6 0.156 7

τ ∗
e 124.6 124.1 123.7 123.1 122.4

CRe(τ
∗
e ) 35.984 0 36.380 4 36.764 9 37.501 0 38.855 9

A = 0.04 Rcv(Te, T ) 0.058 9 0.087 6 0.115 5 0.169 5 0.270 5

Rvar (Te, T ) 0.055 6 0.030 0 0.005 1 0.043 0 0.133 1

τ ∗
e 116.8 116.4 116.0 115.5 115.0

CRe(τ
∗
e ) 38.553 1 39.013 4 39.458 9 40.308 5 41.861 8

A = 0.08 Rcv(Te, T ) 0.129 5 0.164 3 0.198 1 0.262 9 0.383 5

Rvar (Te, T ) 0.114 7 0.087 4 0.061 0 0.010 1 0.084 4

τ ∗
e 101.4 101.0 100.8 100.6 100.5

CRe(τ
∗
e ) 44.888 4 45.527 2 46.141 5 47.302 2 49.386 7

the optimal replacement time is decreasing in A but always earlier than τ ∗. At
the same time, the optimal long run average cost per unit time is increasing in
A but greater than CR(τ ∗) always. This is consistent with the results obtained in
Theorem 3.4. Additionally, we observe from the results in Table 3.4 that, when
Rcv(Te, T ) increases, CRe(τ

∗
e ) has an increasing trend and τ ∗

e has a decreasing trend.
In the worst case, corresponding to Rcv(Te, T ) = 0.3835, the optimal replacement
time τ ∗

e is significantly earlier than τ ∗ 24.09%, and the corresponding optimal long
run average cost per unit time is significantly increased by 46.46%. This contrasts
sharply with the case Rcv(Te, T ) = 0.0307, in which both the decrease in optimal
replacement time and the increase in optimal long run average cost per unit time are
less than 5%. This demonstrates the necessity of specifying the ME range. Finally, it
is worth noting that, though increasing Rvar (Te, T ) may also make CRe(τ

∗
e ) increase

and τ ∗
e decrease, there is no general trending among τ ∗

e , CRe(τ
∗
e ), and Rvar (Te, T ).

This is due in large part to the fact that Rcv(Te, T ) takes into account both the means
and variances of Te and T , but only the variances of Te and T are taken into account
by Rvar (Te, T ).
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To have a further comparison, we here consider a condition-based replacement
policy which can make replacement decision at each condition monitoring time,
conditional on the condition monitoring data (see, e.g. [29, 37]). Therefore, the
residual life distribution is used in such condition-based replacement instead of the
lifetime distribution and the cost per sampling is also considered with c = 30 RMB in
this case. As discussed previously, the drift of the gyro is often used as a performance
degradation indicator to evaluate the health condition of the inertial platform. Thus,
we use the drift data of the gyro to estimate the residual life and then determine
the optimal replacement time. The specific drift data used in this case are shown
in Fig. 3.7. Suppose that the degradation of the gyro is discretely monitored at time
0 < t1 < ... < ti and let yi = Y (ti ) denote the drift measurement at time ti .
Then, the set of the measurements up to ti is represented by Yi = {y1, y2, ..., yi }
and the corresponding set of the underlying degradation states up to ti is represented
by Xi = {x1, x2, ..., xi }, where xi = X (ti ). According to the model setting, if
the ME is considered, we have yi = xi + ε; otherwise, xi = yi . Based on the
condition monitoring data, the residual life can be estimated at time ti , denoted
by Ri . Further, we denote the estimated residual life distribution with considering
the ME as FRi |Yi (ri ) and without considering the ME as FRi |Xi (ri ). The specific
formulations for FRi |Yi (ri ) and FRi |Xi (ri ) are briefly summarized in Appendix E. For
an illustrating purpose, at the i th monitoring time ti , the average cost per unit time
without the ME under this condition-based replacement policy can be expressed as

CdR(τ ) = i × c + cp F̄ Ri |Xi (τ − ti ) + c f FRi |Xi (τ − ti )

ti + ∫ τ−ti
0 F̄ Ri |Xi (u)du

, (3.26)

where τ corresponds to the decision variable representing the replacement time and
F̄ Ri |Xi (ri ) = 1 − FRi |Xi (ri ). Similarly, the average cost per unit time with the ME at
ti is

CdRe(τ ) = i × c + cp F̄ Ri |Yi (τ − ti ) + c f FRi |Yi (τ − ti )

ti + ∫ τ−ti
0 F̄ Ri |Yi (u)du

, (3.27)

where FRi |Yi (ri ) is the estimated residual life distribution with considering the ME
and F̄ Ri |Yi (ri ) = 1 − FRi |Yi (ri ). It is noted that the underlying assumption for
Eqs. (3.26) and (3.27) is that the next monitoring time is sufficiently long. Thus
Eqs. (3.26) and (3.27) are used to show where the minimum is located and illus-
trate the results regarding the replacement times and the average costs per unit time;
otherwise, the result for τ more than the next monitoring time will be recalculated
after obtaining new monitoring data, since the residual life distribution is updated.
The specific development and clarification for Eqs. (3.26) and (3.27) are given in
Appendix.
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Table 3.5 Optimal long run average cost per unit time and optimal replacement time under condition
based replacement

Times (h) Without ME With ME

CdR(τ ∗)(RMB/h) τ ∗(h) CdRe(τ
∗
e )(RMB/h) τ ∗

e (h)

tk = 0 33.72 132.4 35.37 126.9

tk = 30 36.52 135.2 37.15 134.5

tk = 60 42.61 137.3 42.90 135.3

tk = 90 35.02 141.7 37.24 139.8

tk = 120 39.39 145.1 40.13 143.5

tk = 150 36.85 158.6 37.86 157.3

For comparisons, we compute the optimal long run average cost per unit time and
the optimal replacement time at several different monitoring times, as summarized
in Table 3.5, where τ ∗ and τ ∗

e are the optimal replacement times by minimizing
Eqs. (3.26) and (3.27), respectively.

From Table 3.5, we can observe that the condition-based replacement policy will
lead to the increase of the average cost per unit time, compared with the age-based
replacement policy (corresponding to the results at ti = 0), since the sampling cost is
considered. However, the optimal replacement time is extended obviously and thus
the operation time of the asset is extended, both in the case of considering the ME
effect and the case not considering. Because the monitoring information is considered
in the condition-based replacement policy and thus the estimated residual life is
repeatedly updated to ensure that the most recently calculated residual life reflects
the current reality of the asset. In addition, a common feature shared by the results in
the condition-based replacement policy and age-based replacement policy is that the
appearance of ME will shorten the length of the operation cycle and incur a greater
long run average cost per unit time compared with the case without considering the
ME effect. The above-observed phenomenon is not surprising in that the uncertainty
introduced by the ME will contribute to the uncertainty of the estimated residual life
and thus affect the replacement decisions.

In summary, the results in this case study imply that the replacement decision
made directly using the measured data with the ME could be conservative and thus
is not economically optimal. Instead, by specifying the ME range given a desir-
able lifetime estimation performance, it is possible to mitigate such conservative-
ness so that the effectiveness of the replacement decision can be improved such as
extending the operation cycle of the asset and reducing the long run average cost
per unit time.
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Appendix

Proof of Theorem3.1

From Eq. (3.7), we have

Y (t) = A + X (t) + ε = A′ + X (t). (3.28)

where A′ = A + ε ∼ N (A, σ 2).
As a result, the lifetime Te can be calculated by the time of {Y (t), t ≥ 0} hitting

the threshold w− A′. To do so, the law of total probability is used to incorporate the
randomness involved in A′ due to the ME. Specifically, we calculate the PDF and
CDF of Te as follows:

fT e(t) =
∫

f T e|A′(t)p(A′)dA′ = EA′
[
f T e|A′(t)

]
, (3.29)

FTe(t) =
∫

FTe|A′(t)p(A′)dA′ = EA′
[
FTe|A′(t)

]
, (3.30)

where f T e|A′(t) and FTe|A′(t) can be obtained by replacingwwithw−A′ in Eqs. (3.3)
and (3.4), respectively.

The expectations in Eqs. (3.29) and (3.30) can be evaluated by Lemma 3.2 and
then Eqs. 3.12 and 3.13 are proved. Finally, based on the property of the expectation
operator, E(Te) and var(Te) can be obtained as follows:

E(Te) = EA′
[
E(Te| A′)

] = EA′

[
w − A′

λ

]
= w − A

λ
, (3.31)

var(Te) = E(T 2
e ) − [E(Te)]

2 = EA′
[
E2(Te| A′) + var(Te| A′)

] −
(
w − A

λ

)2

= λσ 2 + (w − A)σ 2
B

λ3
. (3.32)

Proof of Theorem3.2

Using the CV measure defined in Eq. (3.16), we have

0 ≤ |CV (Te) − CV (T )|
CV (T )

≤ Cm, (3.33)

with

CV (Te) =
√

λσ 2 + (w − A) σ 2
B√

λ(w − A)
,CV (T ) = σB√

λw
. (3.34)
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From Eqs. (3.33) and (3.34), we directly have

0 ≤
∣∣∣∣∣∣

√
λσ 2 + (w − A) σ 2

B√
λ(w − A)

− σB√
λw

∣∣∣∣∣∣ /
σB√
λw

≤ Cm . (3.35)

After some manipulations, we obtain

⎧⎪⎨
⎪⎩

if λσ 2 + σ 2
B A (w − A) /w ≥ 0, then λσ 2 + σ 2

B (w − A)
[
1 − (w − A)

(C+
m 1)2

w

]
≤ 0,

if λσ 2 + σ 2
B A (w − A) /w < 0, then λσ 2 + σ 2

B (w − A)
[
1 − (w − A)

(Cm+1)2

w

]
> 0.

.

(3.36)

This completes the proof.

Proof of Theorem3.3

In a general case, we have

vmin ≤ Rvar (Te, T ) =
∣∣∣∣
√

λσ 2+(w−A)σ 2
B√

λ3
−

√
wσB√
λ3

∣∣∣∣ /
√
wσB√
λ3

≤ vmax

⇔ vmin ≤ Rvar (Te, T ) =
∣∣∣∣
√

λσ 2 + (w − A) σ 2
B − σB

√
w

∣∣∣∣ /σB
√
w ≤ vmax

⇔
{
wσ 2

B(2vmin + v2
min) ≤ λσ 2 − Aσ 2

B ≤ wσ 2
B(2vmax + v2

max), λσ 2 − Aσ 2
B ≥ 0

wσ 2
B(v2

max − 2vmax) ≤ λσ 2 − Aσ 2
B ≤ wσ 2

B(v2
min − 2vmin), λσ 2 − Aσ 2

B < 0

.

(3.37)

This completes the proof.

Proof of Theorem3.4

(1) Given the degradation process {X (t), t ≥ 0} as Eq. (3.1) and the threshold w, the
expected cycle length can be expressed as

E (Tr |w) =
∫ τ

0
F̄T (t)dt = τ F̄T (τ ) +

∫ τ

0
t fT (t)dt . (3.38)

Then, similar in spirit to the result in Ye et al. [26], we can complete the proof of
E (Tr |w). For {Y (t), t ≥ 0} with the ME effect as given in Eq. (3.7), similar to the
proof of Theorem 3.2, we have

E (Ter |w) =
∫ τ

0
F̄Te(t)dt = τ F̄Te(τ ) +

∫ τ

0
t fTe(t)dt

= τ

∫
F̄T e|A′(τ )p(A′)dA′ +

∫ τ

0
t

(∫
f T e|A′(t)p(A′)dA′

)
dt

= EA′
[
E
(
Tr |w − A′)] .
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This completes the proof.
(2) To complete the proof, we note that, if σ 2 = 0, fTe(t) in Eq. (3.12) can be

reformulated as

fT e(t) = 1√
2πσ 2

Bt
3

(w − A) exp

(
− (w − A − λt)2

2σ 2
Bt

)

= ηυ√
2πη3t3

exp

(
− (υ − ηt)2

2ηt

)
,

where η = λ2
/
σ 2
B and υ = λ(w − A)

/
σ 2
B .

In this case, fT e(t) is an inverse Gaussian distribution with parameters η and υ.
It is known that υ is a convolution parameter of the inverse Gaussian distribution
([38], Proposition A.1, p. 454), and consequently the inverse Gaussian distribution is
stochastically increasing in υ ([38], Proposition J.4, p. 262). Note that υ is decreasing
in A. Therefore, we conclude that Te is stochastically decreasing in A. Particularly,
when σ 2 = 0 and A = 0, we have fT (t) = fT e(t) and thus it follows T ≥st Te for
A ≥ 0. This completes the proof.

(3) In this case, since σ 2 = 0 and A ≥ 0, we have T ≥st Te from the above result.
Hence, it follows F̄T (t) ≥ F̄T e(t) from the definition of stochastic order. Considering
E (Tr |w) = ∫ τ

0 F̄T (t)dt and E (Ter |w) = ∫ τ

0 F̄Te(t)dt , we directly have

E (Ter |w) ≤ E (Tr |w) . (3.39)

To prove CRe(τ ) ≥ CR(τ ), we first compare the expected cost per unit time as
follows:

cp F̄Te(τ ) + c f FTe(τ ) = cp + (c f − cp)FTe(τ ) ≥ cp + (c f − cp)FT (τ )

= cp F̄T (τ ) + c f FT (τ ), f orc f > cp. (3.40)

From Eqs. (3.24), (3.25), (3.39) and (3.40), we conclude that CRe(τ ) ≥ CR(τ ).
Let τ ∗ and τ ∗

e denote the solutions of minimizing Eqs. (3.24) and (3.25), respec-
tively. According to the proved CRe(τ ) ≥ CR(τ ), we obtain CR(τ ∗) ≤ CR(τ ∗

e ) ≤
CRe(τ

∗
e ). This completes the proof.

Formulations of FRi |Xi (ri ) and FRi |Yi (ri )

According to the setting in Sect. 6.2, when the ME is not considered, we have xi = yi .
In this case, given the condition monitoring data Xi up to ti , we have the following
results for the residual life Ri by using the Markov property of Wiener process and
the results for the inverse Gaussian distribution,

http://dx.doi.org/10.1007/978-3-662-54030-5_6
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f Ri |Xi (ri ) = w − xi√
2πσ 2

Br
3
i

exp

(
− (w − xi − λri )2

2σ 2
Bri

)
, (3.41)

FRi |Xi (ri ) = 1 − Φ(
w − xi − λri√

σ 2
Bri

) + exp(
2λ(w − xi )

σ 2
B

)Φ(
−w − λri + xi√

σ 2
Bri

).

(3.42)

When the ME is considered, we have yi = xi + ε. Thus the degradation state
xi should be estimated based on Yi . Define x̂i = E( xi | Yi ) and Pi = var( xi | Yi ) as
the expectation and variance of xi given the measurements to ti , respectively. Then,
according to the linear and Gaussian nature of the considered model, x̂i and Pi can be
calculated by the Kalman filter and we further have xi | Yi ∼ N (x̂i , Pi ) [39]. Thus the
residual life distribution Ri at ti can be derived similarly by considering the results
in Eq. (3.41) and the derivations in the above part, as follows:

f Ri |Yi (ri ) = λPi + σ 2
B (w − x̂i )√

2π(Pi + σ 2
Bri )

3
exp

⎛
⎝− (w − x̂i − λri )

2

2
(
Pi + σ 2

Bri
)
⎞
⎠ , (3.43)

F Ri |Yi (ri ) = 1 − Φ(
w − x̂i − λri√

σ 2
Bri + Pi

) + exp(
2λ(w − x̂i )

σ 2
B

+ 2λ2Pi
σ 4
B

)Φ(
−w − λri + x̂i − 2λPi /σ

2
B√

σ 2
Bri + Pi

),

(3.44)

where x̂i and Pi are recursively calculated by the Kalman filtering algorithm as
follows:

x̂i = x̂ i |i−1 + K (i)(yi − A − x̂ i |i−1), x̂ i |i−1 = x̂i−1 + λ(ti − ti−1),

K (i) = Pi |i−1(Pi |i−1 + σ 2)−1, Pi |i−1 = Pi−1 + σ 2
B(ti − ti−1),

Pi = (1 − K (i)) Pi |i−1,

with x̂ i |i−1 = E( xi | Yi−1), Pi |i−1 = var( xi | Yi−1), x̂0 = 0 and P0 = 0. It can
be found that the bias A and standard deviation σ for ME can propagate into the
estimated residual life distribution.

Formulations of Eqs. (3.26) and (3.27)

In the considered condition-based replacement policy, because of the availability of
condition monitoring information, there is no point looking further than the next
monitoring point since the residual life distribution will be updated at that point, and
so will the associated decision. This means that the decision should be made over
a finite time horizon from now to the next monitoring check which itself could be
a decision variable. For example, at the i th monitoring point, with the replacement
time τ as the decision variable, we only need to consider the case that τ is less than
the time till the next monitoring, which is fixed in our case study. Otherwise new
CM data will be available at the next monitoring and all need updating and so the
cost formula. If the optimal τ is within the time interval before the next monitoring,
we perform a replacement or otherwise wait till the next monitoring. Since τ is less
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than the interval till the next monitoring, there will be no more monitoring cost to
occur and we only need to include the past monitoring costs till the i th monitoring
point. Indeed, the monitoring will go on, but the replacement variable in our case
is bounded and this is the same to all age-based replacement but just in our case
we limit the replacement variable to be within the interval between current and next
monitoring. In the case study, for an illustrating purpose to show the replacement
time and the associated cost, we calculate the average cost per unit time using a τ

which is longer than the actual next monitoring point to show where the minimum is
located under the assumption that the next monitoring point is sufficiently long. We
use this assumption to formulate the cost function to obtain the optimal replacement
time and associated cost for comparative studies.

Based on the above discussions, under the assumption that the next monitoring
time is sufficiently long, the expected remaining cycle cost starting at the i th monitor-
ing time till the end of the cycle can be calculated as cp F̄ Ri |Xi (τ−ti )+c f FRi |Xi (τ−ti )
in the case without the ME effect, which is obtained based on the renewal reward
theory as the age-based case in Eq. (3.24). At the same time, the according expected
remaining cycle length is

∫ τ−ti
0 F̄ Ri |Xi (u)du. In addition, it is noted that the past sam-

pling cost i × c and time ti have already occurred. Thus, the expected cost per cycle
obtain at the i th monitoring point is i × c + cp F̄ Ri |Xi (τ − ti ) + c f FRi |Xi (τ − ti ),
and the corresponding cycle length is ti + ∫ τ−ti

0 F̄ Ri |Xi (u)du. As a result, at ti , the
average cost per unit time without the ME under this condition-based replacement
policy can be expressed by Eq. (3.26) as

CdR(τ ) = i × c + cp F̄ Ri |Xi (τ − ti ) + c f FRi |Xi (τ − ti )

ti + ∫ τ−ti
0 F̄ Ri |Xi (u)du

.

The case of considering the ME effect is similar and thus omitted here.
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Degrading Systems



Chapter 4
An Adaptive Remaining Useful Life
Estimation Approach with a Recursive Filter

4.1 Introduction

Enhancing safety, efficiency, availability, and effectiveness of industrial and military
systems through prognostics and health management (PHM) paradigm has gained
momentum over the last decade [1, 2]. PHM is a systematic approach that is used
to evaluate the reliability of a system in its actual life cycle conditions, predict
failure progression, and mitigate operating risks via management actions. There
are two parts in PHM, namely, ‘prognostics’ and ‘health management’. Prognostics
is often characterized by estimating the remaining useful life (RUL) of a system
using available condition monitoring (CM) information [3–7]. Once such prognosis
is available, appropriate health management actions such as repair, replacement,
and logistic support can be performed to achieve the required system’s operational
objectives [8–10]. In PHM, the term ‘RUL estimation’ often implies to find the
probability density function (PDF) of the RUL or the mean of the RUL [11], but the
emphasis is often placed more on estimating the PDF of the RUL than the mean RUL
since a PDF can characterize the uncertainty associated with the RUL and is hence
more informative for management decision-making.

The current RUL estimation approaches can be broadly classified as physics of
failure, data-driven and fusion methods. Physics of failure approaches rely on the
physics of underlying failure mechanisms. Data-driven approaches achieve RUL
estimation via data fitting mainly including machine learning and statistics-based
approaches. The fusion approaches are the combination of the physics of failure and
data-driven approaches. However, for complex or large-scale engineering systems,
it is typically difficult to obtain the physical failure mechanisms in advance or cost-
expensive and time-consuming to capture the physics of failure by experiments. In
contrast, data-driven approaches attempt to derive models directly from collected
degradation data or life data, and thus are more appealing and have gained much
attention in recent years.

Statistics-based data-driven methods for RUL estimation can be classified into
the models based on indirectly observed state processes and the models based on

© National Defense Industry Press and Springer-Verlag GmbH Germany 2017
X.-S. Si et al., Data-Driven Remaining Useful Life Prognosis Techniques,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-662-54030-5_4
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directly observed state processes [2]. The former models considered the data partially
indicating the underlying state of the system, and assumed that the available CM data
were stochastically related to the underlying health state. In this case, lifetime data
must be available to establish the relationship between the CM data and failure.
The latter models utilized the observed degradation data directly to describe the
underlying state of the system. Therefore, the RUL is defined as the time to reach
the failure threshold of the monitored degradation data for the first time, namely the
first hitting time (FHT) [12]. It is noted that the observed degradation data with a
threshold are easier to manipulate and implement in practice when lifetime data are
scarce [13, 14].

It is well recognized that degradation process is uncertain over time and thus
stochastic models are frequently used to characterize the evolution of degradation
process. In literature, random effect regression (RER) models and stochastic process
(SP) models are two kinds of most commonly used stochastic models. Lu and Meeker
in [15] first presented the RER model to characterize the degradation of a popula-
tion of units, and many extensions appeared later [2, 16]. However, the degradation
modeling paradigm in RER models is based on the fact that a population of ‘iden-
tical’ systems (or devices) has a common degradation form. However, individual
systems may exhibit different degradation rates, hence the different failure times.
On the other side, Pandey et al. in [17] identified that the temporal uncertainty of
the degradation process was not taken into account in RER models and thus argued
that SP models could remedy it well. They also showed the advantages of SP mod-
els over RER models in condition based maintenance. SP models such as Markov
chain, Gamma processes, and Wiener processes have been widely used to model
the degradation process [5, 18–21]. A Wiener-process-based degradation model is
one of statistics-based data-driven models, which can characterize a non-monotonic
degradation process, and provide a good description of system’s behavior due to an
increased or reduced intensity of the use [22]. This type of models has been applied
to model the degradation process and to estimate the RUL of a variety of industrial
assets, such as rotating element bearings [19], LED lamps [23], self-regulating heat-
ing cables [24], laser generator [25], bridge beams [26], and fatigue crack dynamics
[27]. Therefore, in this chapter, we focus on RUL estimation based on a Wiener
process where the degradation process can be observed directly and a failure thresh-
old of degradation is available. It is known that the selection of the failure threshold
is an important problem in practice. However, such threshold is usually set based on
either engineering domain knowledge or accepted industrial standards. For example,
the ISO 2372 and ISO 10816 are frequently adopted for defining acceptable vibration
threshold levels. It is, therefore, an issue beyond the scope of this chapter. In this
work, we assume that the failure threshold is known a priori.

A Wiener-process-based model has a drift term characterized by its drift coef-
ficient and a noise term by Brownian motion. It has been widely used to model
degradation processes which can be observed directly, and conduct lifetime analy-
sis. Tseng et al. in [23] used a Wiener process to determine the lifetime for the light
intensity of LED lamps of contact image scanners. As an extension, Tseng and Peng
proposed an integrated Wiener process to model the cumulative degradation path
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of a product’s quality characteristics [28]. Joseph and Yu used a Wiener process
for degradation modeling and reliability improvement [14]. Other recent extensions
in lifetime estimation can be found in [29–31]. However, the degradation modeling
paradigm for lifetime analysis in these conventional Wiener-process-based models is
based on an assumption that the estimated PDF of RUL depends only on the currently
observed degradation data, which is a strong Markovian assumption.

To relax this assumption, Gebraeel et al. in [19] presented an exponential degrada-
tion model for rotating element bearings based on a Wiener process, but incorporated
some new and important improvements for RUL estimation. Their model established
a linkage between the past and current degradation data of the same system by a
Bayesian mechanism. However, it is worth noting that the Brownian motion in the
Wiener process was just used as an error term in their models and the availability
of the explicit distribution of the FHT from the Wiener process was not utilized.
Instead, they directly estimated the RUL distribution using an implicit monotonic
assumption. It is well known that Wiener processes are non-monotonic. As such,
the resulted RUL estimates in [19] are approximations. In addition, we note that the
stochastic coefficients reflecting the individual-to-individual variability in [19] fol-
lowed some prior distributions, but no elaborated method was presented to select the
parameters in the prior distributions. Typically, several systems’ historical degrada-
tion data of the same type are required to determine the prior parameters. However,
such historical degradation data of many systems are not always available in prac-
tice, particularly for newly commissioned systems. It is shown in Sect. 4.4 that the
inappropriate selection of the prior parameters can result in inaccurate estimation
of the degradation and the RUL. Wang et al. in [32] recently proposed a Wiener-
process-based model which used all past degradation data to date of the system for
RUL estimation. Their model explicitly used the FHT from the Wiener process for
RUL estimation. However, we note that the model in [32] also required the data of
many same systems for parameter estimation, and the distribution of the updated drift
coefficient was not considered. Our results reveal that considering such distribution
can lead to uncertainty reduction in the estimated RUL. One final observation from
the existing literature of Wiener-process-based RUL estimation models is that all
estimated parameters are not updated in line with newly observed data.

From the above review of related researches, we observe that there are three
issues remaining to be solved when applying Wiener process for RUL estimation.
The first is how to estimate the model parameters from an individual system’s data
without the need of past data from many same systems. The second is to consider
the distribution in the estimated drift coefficient, which is a critical parameter having
impact on both the mean and variance of the RUL. The third is to update model
parameters based on newly observed degradation data. As we know the system’s
life is heavily influenced by the way it is operated, maintained and the environment
where it has been operating. The consideration of the above three issues will make
our model tailored to an individual system through its actual monitoring data which
relate to its operational and environmental characteristics.

In this chapter, we address the above issues by utilizing a Wiener-process-based
model with a recursive filter algorithm for RUL estimation. We use two techniques
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for the updating of the RUL estimation. A state-space model is used to recursively
update the drift coefficient and an expectation maximization (EM) algorithm is used
to reestimate all unknown parameters at each time when new data are available. The
new contributions of this chapter are summarized as follows: (1) Different from all
previous works, our model estimates an individual system’s RUL based on its entire
monitoring information to date through a recursive filter and an EM algorithm, and
does not require historical degradation data of other systems in a population; (2)
Unlike the work of Wang et al. in [32] where a recursive filter was also used, the drift
coefficient is treated as a random variable to incorporate its distribution in estimation;
(3) Our model is also different from the approximated results in [19, 33] in that our
result on the PDF of the RUL is exact in the sense of the FHT, and we also show that
our result can ensure that the moments of the RUL exist, but this is not the case for
the approximated results in [19, 33]; (4) We apply the proposed model to estimate
the RUL of gyros in an inertial navigation system used in weapon systems as a case
application.

The remainder parts are organized as follows. In Sect. 4.2, we develop a Wiener-
process-based degradation model and obtain the distribution of the RUL. In Sect. 4.3,
we discuss the parameter estimation algorithm in detail. Section 4.4 provides a case
study to illustrate the application and usefulness of the developed model.

4.2 Wiener-Process-Based Degradation Modeling and RUL
Estimation

4.2.1 An Outline of Wiener-Process-Based Degradation
Model for Lifetime Analysis

In this section, we briefly present the conventional Wiener-process-based degrada-
tion model for lifetime analysis. A Wiener process is typically used for modeling
degradation processes where the degradation increases linearly in time with random
noise. The rate of degradation is characterized by the drift coefficient. The wear of
break pads on automotive wheels is a practical example. Christer and Wang in [34]
modeled the wear of break pads as a linear function of time where the thickness of
the break pad decreases linearly in time with a Gaussian noise.

In general, a Wiener-process-based degradation model can be represented as,

X (t) = λt + σ B(t), (4.1)

where λ is the drift coefficient, σ > 0 is the diffusion coefficient, and B(t) is the
standard Brownian motion representing the stochastic dynamics of the degradation
process.

In physics, a Wiener process aims at modeling the movement of small particles
in fluids and air with tiny fluctuations. A characteristic feature of this process in
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the context of reliability is that the plant’s degradation can increase or decrease
gradually and accumulatively over time. The tiny increase or decrease in degradation
over a small time interval behaves similarly to the random walk of small particles
in fluids and air. Therefore, this type of stochastic processes has been widely used
to characterize the path of degradation processes where successive fluctuations in
degradation can be observed, such as the degradation observations of rotating element
bearings [19], LED lamps [23], self-regulating heating cables [24], laser generator
[25], bridge beams [26] and other examples in [14, 30–35] and our case of gyros’
drifting. Modeling a stochastic degradation process as a Wiener process implies that
the mean degradation path is a linear function of time, i.e., E [X (t)] = λt . Therefore,
the drift parameter λ is closely related with the progression of the degradation. In
addition, we have the variance of the degradation process var [X (t)] = σ 2t , which
represents the uncertainty of the degradation at time t .

For in service lifetime estimation at time ti with the obtained degradation obser-
vation xi , we can use,

X (t) = xi + λ(t − ti ) + σ (B(t) − B(ti ))

= xi + λ(t − ti ) + σ B(t − ti ), f or t > ti . (4.2)

At time ti , we assume xi < w, otherwise the degradation has crossedw and the sys-
tem would have failed as defined. Although the above model setting is the same, there
are two different ways to relate the degradation X (t) to lifetime T at ti in the literature.
The first one is that the lifetime is directly defined as T = {t : X (t) ≥ w| xi }, and then
the lifetime distribution can be represented by FT |xi ( t | xi ) = Pr( X (t) ≥ w| xi ), such
as [19, 31, 33]. To see this, using T = {t : X (t) ≥ w| xi }, the PDF and the cumulative
density function (CDF) of lifetime T at time ti can be directly obtained as,

f T |xi ( t | xi ) = 1

σ
√

2π(t − ti )
exp

(
− (w − xi − λ(t − ti ))

2

2σ 2(t − ti )

)
, (4.3)

FT |xi ( t | xi ) = 1 − Φ

(
w − xi − λ(t − ti )

σ
√
t − ti

)
, (4.4)

where Φ(·) denotes the standard normal CDF.
Another one defines the lifetime based on the concept of the FHT as T =

inf {t : X (t) ≥ w| xi }, such as [21, 29, 30, 32, 35]. Therefore, using the FHT, the
following results can be obtained [36],

f T |xi ( t | xi ) = w − xi√
2π(t − ti )3σ 2

exp

{
− (w − xi − λ(t − ti ))

2

2σ 2(t − ti )

}
, (4.5)
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FT |xi ( t | xi ) =1 − Φ

(
w − xi − λ(t − ti )

σ
√
t − ti

)
+

exp

{
2λ(w − xi )

σ 2

}
Φ

(−(w − xi ) − λ(t − ti )

σ
√
t − ti

)
, (4.6)

with the mean E [T | xi ] = ti + (w− xi )/λ and variance var [T | xi ] = (w − xi )σ 2/λ3.
This reflects the relationship between the parameters used in the model, the current
degradation measurement and the estimated future life of the plant modeled. Partic-
ularly, λ is critical for both the mean and variance of the estimated lifetime.

Clearly, the above two definitions are different from each other and also lead to dif-
ferent lifetime estimations. As noted by Park and Bae in [16], T = {t : X (t) ≥ w| xi }
completely ignores the possible hitting events within interval (ti , t) and thus is only
a crude approximation to T = inf {t : X (t) ≥ w| xi } when the degradation fluctua-
tions are large. In addition, the CDF using the FHT as Eq. (4.6) is greater than the
approximation by Eq. (4.4). For safety-critical systems, using the approximated result
as Eq. (4.4) for maintenance scheduling may lead to under-maintenance because of
the lower risk of failure estimated by Eq. (4.4). As such, it is necessary to consider
the FHT as the lifetime, which is exact if the failure is defined as the FHT.

We note that Eq. (4.6) uses only the current degradation data, but not its history
before ti . However, as we have discussed, this is a strong Markovian assumption and
ideally the future FHT should depend on the path that the degradation has involved
to date. For example, in Fig. 4.1, at the same level of xi , case (a) would be expected
to fail faster than case (b), but using Eq. (4.6) will give the same prediction.

Consequently, it is desired to utilize the degradation data to date for evaluating
the RUL of the degraded system. It is expected that utilizing the degradation data to
date can make the RUL estimation sharper and more tailored to an individual system
than only using the current data. This is our main focus in the remaining parts of this
chapter.

(a) (b)

Fig. 4.1 Two exemplar sample paths with different tracks but the same xi
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4.2.2 Wiener-Process-Based Degradation Modeling

Now we address the issues discussed in the introduction. Since some variants intro-
duced in [19] can be easily transformed into Eq. (4.1) by logarithmic transformation,
we only focus on Eq. (4.1) which is used to describe the evolution of the monitored
degradation variable over time in this chapter.

To incorporate the history of the observations and to maintain at the same time
the nice property of the Wiener process, we consider an updating procedure for
coefficient λ by a random walk model λi = λi−1 + η over time where η ∼ N (0, Q).
Thus the drift coefficient λ evolves as a time-dependent random variable with a
distribution, conditional on λi−1. In fact, the diffusion coefficient, σ , can also be
made time-dependent. However the structure of Eq. (4.1) does not allow us to use
the state-space model shown later, and therefore a general filter has to be used,
which is computationally difficult. There is also a practical reason why we are only
interested in making λ time-varying. It is known from Eq. (4.1) and the discussion
in Sect. 4.2.1 that the mean degradation and the progression of the degradation are
governed by the drift coefficient λ and the time while the diffusion coefficient σ
controls in part the uncertainty in the degradation process. The trend in degradation
is determined by the drift coefficient while the diffusion coefficient only influences
the noise, which can be considered to be constant. A similar idea can also be found
in statistical process control literature, in which it is frequently assumed that the
process mean will change but the variance will be constant when the process shifts
from ‘in control’ to ‘out of control’ [37]. Motivated by the state-space model [38],
the degradation equation can be reconstructed via a linear state-space model as,

λi = λi−1 + η, (4.7)

xi = xi−1 + λi−1(ti − ti−1) + σεi , (4.8)

where t0 = 0, x0 = 0, and εi ∼ N (0, ti − ti−1). The use of ti − ti−1 as the variance
of εi is required by the property of Brownian motion. Equation (4.7) is called the
system equation, while Eq. (4.8) is the observation equation [38]. The reason to use
a linear system equation is not only because of its simplicity. We can use a nonlinear
system equation for λi , but we expect that the gain obtained will be minor, but at the
expense of a substantially long computation time. There is also a practical problem
as what form of nonlinearity we should use because λi is not observable. Since
the system equation is to model the change of the drift coefficient over a sampling
interval which is not long, we would expect that λi should be around λi−1 adjusted
by the noise term.

We assume that the initial drift coefficient λ0 follows a normal distribution with
mean a0 and variance P0 as required by the state space model. The drift coefficient
is considered as a hidden “state” and can be estimated from the observations up to ti ,
denoted by X0:i = {x0, x1, x2, . . . , xi }. As such, this model establishes the linkage
between the drift coefficient and the observation history up to ti . In Eq. (4.7), λi



80 4 An Adaptive Remaining Useful Life Estimation Approach with a Recursive Filter

follows a distribution which can be estimated by a recursive filter once new obser-
vation xi is available at ti . We denote its mean by λ̂i = E(λi |X0:i ) and its variance
by Pi |i = Var(λi |X0:i ).

In order to compute λ̂i and Pi |i , we need to know the PDF of the λi given X0:i ,
denoted by p(λi |X0:i ). Recursion solution of p(λi |X0:i ) can be computed from
p(λi−1|X0:i−1) by the well-known Bayesian rule as follows,

p(λi | X0:i ) =
∫

p(λi |λi−1 )p(λi−1| X0:i )dλi−1

=
∫
p(λi |λi−1 )p( xi | λi−1, X0:i−1)p(λi−1| X0:i−1)dλi−1

p( xi | X0:i−1)
. (4.9)

It has been well established that if Eqs. (4.7) and (4.8) are used, Eq. (4.9) is
Gaussian with mean λ̂i and variance Pi |i which can be computed by the Kalman filter
[38]. As a result, the entire history is captured via recursively updating the estimate
of λi , which is the advantage of the state-space model. The recursive estimations for
λ̂i and Pi |i using Kalman filtering are summarized as

Algorithm 4.1 (Kalman filtering algorithm)
Step 1: Initialize λ̂0 = a0, P0.
Step 2: State estimation at time ti

Pi |i−1 = Pi−1|i−1 + Q
Ki = (t−i ti−1)

2Pi |i−1 + σ 2(ti − ti−1)

λ̂i = λ̂i−1 + Pi |i−1(t
−
i ti−1)K

−1
i

(
xi − xi−1 − λ̂i−1(t

−
i ti−1)

) .

Step 3: Updating variance Pi |i = Pi |i−1 − Pi |i−1(t
−
i ti−1)

2K−1
i Pi |i−1.

In literature, the Kalman filter has been successfully applied when system states
(here referred the drift coefficient as a state) and observations evolve in a smooth and
gradually changing way. However, degradation sometimes may have jumps or sudden
changes [19]. Here, we introduce an algorithm to deal with this by a strong tracking
filter (STF) [39]. STF is also Kalman filter-based, but adjusts the prediction variance
Pi |i−1 so that it is sensitive to the prediction error, xi − xi−1 − λ̂i−1(ti − ti−1), and
then the filter gain Ki is sensitive to the change of the system state. The details about
the STF algorithm are summarized as Algorithm 4.2.

Algorithm 4.2 (Strong tracking filtering algorithm)
Step 1: Initialize λ̂0 = a0, P0, α, ρ.
Step 2: Calculating fading factor υ(ti ) from orthogonality principle

V0(ti ) =
{

γ 2(t1), i = 1
ρV0(ti−1)+γ 2(ti )

1+ρ , i > 1
with γ (ti ) = xi − xi−1 − λ̂i−1(ti − ti−1)

B(ti ) = V0(ti ) − Q(ti − ti−1)
2 − ασ 2(ti − ti−1);C(ti ) = Pi−1|i−1(ti − ti−1)

2; υ0 = B(ti )
/
C(ti )

υ(ti ) =
{

υ0, υ0 ≥ 1

1, υ0 < 1

.
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Step 3: State estimation
Pi |i−1 = υ(ti )Pi−1|i−1 + Q
Ki = (ti − ti−1)

2Pi |i−1 + σ 2(ti − ti−1)

λ̂i = λ̂i−1 + Pi |i−1(ti − ti−1)K
−1
i

(
xi − xi−1 − λ̂i−1(ti − ti−1)

)
.

Step 4: Updating variance Pi |i = Pi |i−1 − Pi |i−1(ti − ti−1)
2K−1

i Pi |i−1.

In Algorithm 4.2, α ≥ 1 and ρ denote the softening factor and the forgetting factor
respectively, which can be selected heuristically. ρ = 0.95 has been used in general
[39, 40].

Based on Eqs. (4.7), (4.8), and (4.9), the PDF of λi conditional on X0:i is,

p(λi |X0:i ) = 1√
2π Pi |i

exp

[
−
(
λi − λ̂i

)2
/

2Pi |i
]

, (4.10)

where the dependence between λi and X0:i is contained in λ̂i and Pi |i . Based on this
result, we derive the associated RUL distribution in the following.

4.2.3 Real-Time Updating of the RUL Distribution

Based on a predefined threshold w, the RUL modeling principle is that when degra-
dation X (t) first reaches threshold w, the system is declared to be nonoperable and
its lifetime terminates. Consequently, it is natural to view the event of lifetime termi-
nation as the point that the degradation X (t) exceeds threshold w for the first time.
In this chapter, from the concept of the FHT, we define RUL Ri at time ti as

Ri = inf {ri : X (ri + ti ) ≥ w|X0:i } , (4.11)

with CDF FRi |X0:i (ri |X0:i )and PDF fRi |X0:i (ri |X0:i ).
From Eq. (4.2), it is direct to obtain the PDF and CDF of the RUL at time ti

defined in Eq. (4.11) as follows [36],

fRi |λi ,X0:i (ri |λi ,X0:i ) = w − xi√
2πr3

i σ
2

exp

(
− (w − xi − λi ri )

2

2σ 2ri

)
, ri > 0. (4.12)

FRi |λi ,X0:i (ri |λi ,X0:i ) =1 − Φ

(
w − xi − λi ri

σ
√
ri

)
+ exp

(
2λi (w − xi )

σ 2

)
×

Φ

(−(w − xi ) − λi ri
σ
√
ri

)
, ri > 0. (4.13)
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In Eq. (4.12) if we replace λi by λ̂i , then it is the RUL model used in [32].
We call this as Wang’s model for subsequent comparisons in Sect. 4.4. However,
as mentioned above, the drift coefficient evolves as a random variable in Eq. (4.7)
with a distribution, p(λi |X0:i ), conditional on the observed data up to time ti as
formulated by Eq. (4.10). Now we want to use p(λi |X0:i ) for deriving the estimated
RUL distribution. In order to achieve this aim, we first give two lemmas, which can
significantly simplify the course of the derivation for the RUL distribution.

Lemma 4.1 If Y ∼ N (μ1, σ
2
1 ), then EY [Φ(Y )] can be formulated as EY [Φ(Y )] =

Φ(μ1

/√
σ 2

1 + 1) where Φ(·) denotes the standard normal CDF.

Proof From the property of the normal distribution, we have

EY [Φ(Y )] = E
[
E(I{Z≤Y }

∣∣ Y )
∣∣ Y ] = Pr(Z ≤ Y ) = Pr(Z − Y ≤ 0)

= Φ(μ1

/√
σ 2

1 + 1)
. (4.14)

In the derivation process, I{Z≤Y } is the indicator function, Z is a standard normal
variable and independent of Y , and Z − Y ∼ N (−μ1, σ

2
1 + 1).

Lemma 4.2 If λ ∼ N (μλ, σ
2
λ ), the PDF and CDF of the FHT of process X (t) =

λt + σ B(t) to first hit threshold w can be formulated as

fT (t) = w√
2π t3

(
σ 2

λ t + σ 2
) exp

[
− (w − μλt)

2

2t
(
σ 2

λ t + σ 2
)
]

. (4.15)

FT (t) = Φ

⎛
⎝ μλt − w√

σ 2
λ t

2 + σ 2t

⎞
⎠ + exp

(
2μλw

σ 2 + 2σ 2
λw

2

σ 4

)
Φ

⎛
⎝−2σ 2

λwt + σ 2 (μλt + w)

σ 2
√

σ 2
λ t

2 + σ 2t

⎞
⎠ .

(4.16)

Lemma 4.2 is similar to the results given in [41, 42]. This lemma can be obtained
by some direct manipulations using Lemma 4.1 and the total law of probability [25].
From Lemma 4.2, we give the following theorem.

Theorem 4.1 For theWiener process defined by Eq. (4.2) and the state-space model
as Eqs. (4.7) and (4.8), the PDF and CDF of the updated RUL at ti based on the
updated PDF of λi can be obtained as

fRi |X0:i (ri |X0:i ) = w − xi√
2πr3

i

(
Pi |i ri + σ 2

) exp

⎛
⎜⎝−

(
w − xi − λ̂i ri

)2

2ri
(
Pi |i ri + σ 2

)
⎞
⎟⎠ , ri > 0.

(4.17)
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FRi |X0:i (ri |X0:i ) = 1 − Φ

(
w−xi−λ̂i ri√
Pi |i r2

i +σ 2ri

)

+ exp
(

2λ̂i (w−xi )
σ 2 + 2Pi |i (w−xi )2

σ 4

)
Φ

(
− 2Pi |i (w−xi )ri+σ 2

(
λ̂i ri+w−xi

)

σ 2
√

Pi |i r2
i +σ 2ri

)
.

(4.18)

Proof Using Eqs. (4.10), (4.12), (4.13), (4.15) and (4.16) and the total law of prob-
ability, we have

fRi |X0:i (ri |X0:i ) =
∫ +∞

−∞
fRi |λi ,X0:i (ri |λi ,X0:i )p(λi |X0:i )dλi , (4.19)

FRi |X0:i (ri |X0:i ) =
∫ +∞

−∞
FRi |λi ,X0:i (ri |λi ,X0:i )p(λi |X0:i )dλi . (4.20)

Following Lemma 4.2, it is straightforward to obtain Eqs. (4.17) and (4.18).
Comparing Eq. (4.17) with Eq. (4.12), we observe that the observation history and

the variance of λi are involved in Eqs. (4.17) and (4.18), which is also recursively
updated. We call Eq. (4.17) as our model to distinguish other models in Sect. 4.4.
Therefore, in the RUL estimation by our model, we account for both the temporal
uncertainty of the degradation process and the uncertainty in drift parameter λi .

Remark 4.1 In [19], they directly used Pr( Ri ≤ ri |X0:i )= Pr ( X (ri + ti ) ≥ w|X0:i )
to calculate the RUL distribution and obtained the associated RUL distribution
with similar form to Eqs. (4.3) and (4.4). However, using Pr( Ri ≤ ri |X0:i ) =
Pr ( X (ri + ti ) ≥ w|X0:i ) ignores the possible hitting events within (ti , ti + ri ) as
discussed in Sect. 4.2.1 and thus their results are approximations. Instead, Eqs. (4.17)
and (4.18) are exact in the sense of the FHT.

Remark 4.2 The moment of the RUL distribution obtained in [19, 33], does not exist
since their obtained RUL distributions belong to the family of Bernstein distributions,
known without moments, but this is not the case for our result. For example, the mean
of RUL can be easily formulated by

E( Ri |X0:i ) = E [ E( Ri | λi ,X0:i )|X0:i ] = E

(
w − xi

λi

∣∣∣∣X1:k
)

= w − xk
Pi |i

exp

(
− λ̂2

i

2Pi |i

)∫ λ̂i

0
exp

(
u2

2Pi |i

)
du

=
√

2 (w − xi )√
Pi |i

D

(
λ̂i√
2Pi |i

)
,

where D(z) = exp(−z2)
∫ z

0 exp(u2)du is the Dawson integral for real z, which is
known to exist. This property is desired in maintenance practice, since the expectation
of the life estimation is required to be existent sometimes [43, 44].
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In Eqs. (4.17) and (4.18), parameters a0, P0, Q and σ 2 should be estimated. As
opposed to the result in [19, 32], we develop a parameter estimation algorithm in the
following section for this task.

4.3 Parameter Estimation

Now we return to estimate and update a0, P0, Q and σ 2 in Eqs. (4.7) and (4.8).
Unlike the method adopted in [32], we use only the data from one system from the
time of installation and recursively update the estimate along with the observation
process. We denote θ = [a0, P0, Q, σ 2]T as a parameter vector. We use the maximum
likelihood estimation (MLE) to estimate θ once new degradation observation xi is
available. In this case, the log-likelihood function for X0:i can be written as

Li (θ) = log[p(X0:i |θ)], (4.21)

where p(X0:i |θ) is the joint PDF of the degradation dataX0:i . Then the MLE estimate
of θ , denoted by θ̂i , conditional on X0:i can be obtained by

θ̂i = arg max
θ

Li (θ). (4.22)

If the drift coefficient is constant then maximizing Eq. (4.21) with respect to θ is
straightforward. However, since we treat λi as a hidden variable which is given
by Eq. (4.7), then directly maximizing Eq. (4.21) is impossible. However, the EM
algorithm provides a possible framework for estimating the parameters involving
hidden variables [45]. A fundamental assumption of the EM algorithm is that the
hidden variables can be estimated by observed data. This is the case for our problem
since p(λi |X0:i ) can be obtained by Eq. (4.10).

4.3.1 EM Algorithm

The fundamental principle of the EM algorithm is to replace the hidden variables
with their expectations conditional on the observed data. Then the parameter estima-
tion can be formulated as maximizing the joint likelihood function p(X0:i , Υi | θ).
Specifically, by manipulating the relationship between p(X0:i |θ ) and p(X0:i , Υi | θ),
Li (θ) can be divided into two parts as

Li (θ) = 
i (θ) − log p(Υi |X0:i , θ), (4.23)

where

i (θ) = log p(X0:i , Υi | θ). (4.24)
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Then taking the expectation operator on both sides of Eq. (4.23) with respect to
Υi |X0:i , θ ′, we have

Li (θ) = 
(θ | θ ′) − K (θ | θ ′), (4.25)

where

(θ | θ ′) = E Υi |X0:i ,θ ′ {
i (θ)} , (4.26)

K (θ | θ ′) = EΥi |X0:i ,θ ′ {log p(Υi |X0:i , θ)} . (4.27)

Finally, via Eq. (4.25), the following holds

Li (θ) − Li (θ
′) = 
(θ | θ ′) − 
(θ ′∣∣ θ ′) + K (θ ′∣∣ θ ′) − K (θ | θ ′)︸ ︷︷ ︸

≥0

, (4.28)

where the positivity of the last term is implied by the Kullback–Leibler divergence
metric between p(Υi |X0:i , θ) and p(Υi |X0:i , θ ′), see [46] for reference.

Obviously, if 
(θ | θ ′) > 
(θ ′∣∣ θ ′), then Li (θ) − Li (θ
′) > 0 holds. This is achieved

by the EM algorithm which takes an approximation θ̂
(k)
i of MLE θ̂i given in Eq. (4.22)

and updates it to a better θ̂
(k+1)
i according to the following two steps:

• E-step: Calculate


(θ | θ̂ (k)
i ) = EΥi |X0:i ,θ̂ (k)

i
{
i (θ)} , (4.29)

where θ̂
(k)
i = [a(k)

0i , P (k)
0i , Q(k)

i , σ 2
i

(k)]T denotes the estimated parameters in the kth
step conditional on X0:i .

• M-step: Calculate

θ̂
(k+1)
i = arg max

θ

{
EΥi |X0:i ,θ̂ (k)

i
{
i (θ)}

}
. (4.30)

Then we iterate the E-step and M-step until a criterion of convergence is satisfied.
In our case, we can calculate the E-step and M-step separately but just outline the
properties of the estimation algorithm. The details of the algorithm are summarized
in Appendix C. Interestingly, it can be observed from Theorem 2 in Appendix C
that the M-step in our approach can be solved analytically and we can obtain the
unique maximum point. This implies that each iteration of the EM algorithm can be
performed with a single computation, which leads to an extremely fast and simple
estimation procedure. This computation advantage plus the exact RUL distribution
are particularly attractive for practical applications. The convergence property of the
proposed algorithm can be similarly demonstrated in [47–51]. In the next part, the
specific implementation of the EM algorithm for the proposed model is provided.
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4.3.2 The Implementation of EM Algorithm for the Proposed
Model

Following the above-mentioned procedures for the EM algorithm, the joint log-
likelihood function for our problem can be expressed as


i (θ) = log p(X0:i | Υi , θ) + log p(Υi | θ)

= log p(λ0| θ) + log
∏i

j=0
p(λ j

∣∣ λ j−1, θ) + log
∏i

j=0
p( x j

∣∣ λ j−1, θ).

(4.31)

From Eqs. (4.7) and (4.8), we directly have

λ j

∣∣ λ j−1 ∼ N (λ j−1, Q),

x j

∣∣ λ j−1 ∼ N
(
x j−1 + λ j−1(t j − t j−1), σ

2(t j − t j−1)
)
,

λ0 ∼ N (a0, P0).

Using Eq. (4.31) and ignoring the constant terms, the joint log-likelihood function
can be formulated as

2
i (θ) = − log P0 − (λ0 − a0)
2
/
P0 −

∑i

j=1

(
log Q + (λ j − λ j−1)

2
/
Q
)

−
∑i

j=1

(
log σ 2 + (

x j − x j−1 − λ j−1(t j − t j−1)
)2
/

σ 2(t j − t j−1)
)
.

(4.32)

To calculate the conditional expectation 
(θ | θ̂ (k)
i ) defined in Eq. (4.29), we have

2
(θ | θ̂ (k)
i ) = E Υi |X1:i ,θ̂ (k)

i
[2
i (θ)]

= E Υi |X0:i ,θ̂ (k)
i

[
− log P0 − (λ0 − a0)

2/P0 −
∑i

j=1

(
log Q + (λ j − λ j−1)

2/Q)

−
∑i

j=1

(
log σ 2 + (

x j − x j−1 − λ j−1(t j − t j−1)
)2
/(

σ 2(t j − t j−1)
))]

. (4.33)

Clearly, to calculate the expectation of this expression requires to obtain E Υi |X0:i ,θ̂ (k)
i

(λ j ), E Υi |X0:i ,θ̂ (k)
i

(λ2
j ) and E Υi |X0:i ,θ̂ (k)

i
(λ jλ j−1), which are the conditional expectations

with respect to Υi , given the observed history X0:i . In this chapter, we use the Rauch–
Tung–Striebel (RTS) smoother to provide an optimal estimation of E Υi |X0:i ,θ̂ (k)

i
(λ j ),

E Υi |X0:i ,θ̂ (k)
i

(λ2
j ) and E Υi |X0:i ,θ̂ (k)

i
(λ jλ j−1), summarized as Algorithm 4.3, [48, 52]. In

Algorithm 4.3, we define M j |i = Cov(λ j , λ j−1

∣∣X0:i ).
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Algorithm 4.3 (RTS smoothing algorithm)
Step 1: Forwards iteration by Algorithm 4.1 or Algorithm 4.2
Step 2: Backwards iteration

Sj = P j | j P−1
j+1| j

λ̂ j |i = λ̂ j + Sj (λ̂ j+1|i − λ̂ j+1| j ) = λ̂ j + Sj (λ̂ j+1|i − λ̂ j )
Pj |i = Pj | j + S2

j (Pj+1|i − Pj+1| j )

Step 3: Initialize
Mi |i = (1 − Ki (ti − ti−1)) Pi−1|i−1

Step 4: Backwards iteration for smoothing covariance
Mj |i = P j | j S j−1 + Sj (Mj+1|i − P j | j )Sj−1.

From the RTS smoothing algorithm, we can obtain the conditional expectations
of E Υi |X0:i ,θ̂ (k)

i
(λ j ), E Υi |X0:i ,θ̂ (k)

i
(λ2

j ) and E Υi |X0:i ,θ̂ (k)
i

(λ jλ j−1) in the following lemma.

Lemma 4.3 Conditional on current estimated parameter θ̂
(k)
i and observations his-

tory X0:i , the values of E Υi |X0:i ,θ̂ (k)
i

(λ j ), E Υi |X0:i ,θ̂ (k)
i

(λ2
j ) and E Υi |X0:i ,θ̂ (k)

i
(λ jλ j−1) are

given by

E
Υi |X0:i ,θ̂ (k)

i
(λ j ) = λ̂ j |i ,

E
Υi |X0:i ,θ̂ (k)

i
(λ2

j ) = λ̂2
j |i + Pj |i ,

E
Υi |X0:i ,θ̂ (k)

i
(λ jλ j−1)= λ̂ j |i λ̂ j−1|i + Mj |i = P j | j S j−1 + S j (Mj+1|i − P j | j )S j−1 + λ̂ j |i λ̂ j−1|i .

(4.34)

Proof These equations are the direct results of applying the properties of variance–
covariance and RTS smoothing algorithm and the proof is hence omitted.

From Eq. (4.34) and Lemma 4.3, 
(θ | θ̂ (k)
i ) can be written as

2
( θ | θ̂ (k)
i )

=E
Υi |X0:i ,θ̂

(k)
i

[
2
i (θ)

]

=E
Υi |X0:i ,θ̂

(k)
i

[
− log P0 − (λ0 − a0)2

P0
−

∑i

j=1

(
log Q + (λ j − λ j−1)2

Q

)
−

∑i

j=1

(
log σ 2 + (

x j − x j−1 − λ j−1(t j − t j−1)
)2
/(

σ 2(t j − t j−1)
))]

= − log P0 − (C0|i − 2a0|i a0 + a2
0)

P0
−

∑i

j=1

(
log Q + (C j |i − 2C j, j−1|i + C j−1|i )

Q

)
−

∑i

j=1

(
log σ 2 + (x j − x j−1)2 − 2λ̂ j−1|i (x j − x j−1)(t j − t j−1) + (t j − t j−1)2C j−1|i

σ 2(t j − t j−1)

)
.

(4.35)
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This completes the E-step and in the following we handle the M-step.
After obtaining 
(θ | θ̂ (k)

i ), the results of estimated parameter θ̂
(k+1)
i in the (k+1)th

step can be summarized in the following theorem.

Theorem 4.2 θ̂
(k+1)
i , by maximizing 
(θ | θ̂ (k)

i ), is given by

a(k+1)
0i = a0|i ,
P (k+1)

0i = C0|i − a2
0|i = P0|i ,

Q(k+1)
i = 1

i

∑i
j=1 (C j |i − 2C j, j−1|i + C j−1|i ),(

σ 2
)(k+1)

i = 1
i

∑i
j=1

(
(x j−x j−1)

2−2λ̂ j−1|i (x j−x j−1)(t j−t j−1)+(t j−t j−1)
2C j−1|i

t j−t j−1

)
.

with C j |i = E Υi |X0:i ,θ̂ (k)
i

(λ2
j ), a0|i = λ̂0|i ,C j, j−1|i = E Υi |X0:i ,θ̂ (k)

i
(λ jλ j−1) and θ̂

(k+1)
i

is uniquely determined and located at the maximum.

Proof The unknown parameters θ̂
(k+1)
i can be obtained by maximizing the 
(θ | θ̂ (k)

i )
with θ . Therefore, the central goal in this step is to find the maximum of function

(θ | θ̂ (k)

i ) on θ , i.e.,

θ̂
(k+1)
i = arg max

θ

{
EΥi |X0:i ,θ̂ (k)

i
{
i (θ)}

}
= arg max

θ

(θ | θ̂ (k)

i ). (4.36)

From Eq. (4.35), taking ∂
(θ | θ̂ (k)
i )

/
∂θ , we obtain the solution by

∂
(θ | θ̂ (k)
i )

/
∂θ = 0, which leads to the maximum, and taking ∂2
(θ | θ̂ (k)

i )
/

∂θ∂θT ,

the following is obtained,

∂2
(θ | θ̂ (k)

i )

∂θ∂θT
= 1

2

⎡
⎢⎢⎢⎢⎣

− 2
P0

2(a0−a0|i )

P2
0

0 0
2(a0−a0|i )

P2
0

1
P2

0
− 2(C0|i −2a0|i a0+a2

0 )

P3
0

0 0

0 0 k
Q2 − 2ψ

Q3 0
0 0 0 i

σ 4 − 2ϕ
σ 6

⎤
⎥⎥⎥⎥⎦ , (4.37)

with

ψ =
∑i

j=1
(C j |i − 2C j, j−1|i + C j−1|i ),

ϕ =
∑i

j=1

((
x j − x j−1

)2 − 2λ̂ j−1|i
(
x j − x j−1

)
(t j − t j−1) + (t j − t j−1)2C j−1|i

t j − t j−1

)
.

(4.38)

We show that the matrix in (4.37) is negative definite at θ = θ̂
(k+1)
i , by calculating

the order principal minor determinant as follows,
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Δ1 = − 1

P0
,Δ2 = − 1

2P0

(
1

P2
0

− 2(C0|i − 2a0|i a0 + a2
0)

P3
0

)
− (a0 − a0|i )2

P4
0

,

Δ3 = 1

2

(
i

Q2
− 2ψ

Q3

)
Δ2,Δ4 = 1

2

(
i

σ 4
− 2ϕ

σ 6

)
Δ3.

Then, at θ = θ̂
(k+1)
i , the followings are obtained,

Δ1|
θ=θ̂

(k+1)

i
= − 1

P0|i
< 0,

Δ2|
θ=θ̂

(k+1)

i
= − 1

2P0|i

(
1

P2
0|i

− 2(C0|i − 2a0|i a0|i + a2
0|i )

P3
0|i

)
− (a0|i − a0|i )2

P4
0|i

= − 1

2P0|i

(
1

P2
0|i

− 2

P2
0|i

)
= 1

2P3
0|k

> 0,

Δ3|
θ=θ̂

(k+1)

i
= 1

2

(
i3

ψ2
− 2i3ψ

ψ3

)
Δ2|

θ=θ̂
(k+1)

i
= − i3

2ψ2
Δ2|

θ=θ̂
(k+1)

i
< 0,

Δ4|
θ=θ̂

(k+1)

i
= 1

2

(
i

σ 4
− 2ϕ

σ 6

)
Δ3|

θ=θ̂
(k+1)

i
= 1

2

(
i3

ϕ2
− 2i3ϕ

ϕ3

)
Δ3|

θ=θ̂
(k+1)

i

= − i3

2ϕ2
Δ3|

θ=θ̂
(k+1)

i
> 0.

This completes the proof that the matrix in (4.37) is negative definite at θ = θ̂
(k+1)
i ,

verifying that θ̂ (k+1)
i is located at a maximum. In addition, θ̂ (k+1)

i is unique since θ̂
(k+1)
i

is the only solution satisfying ∂
(θ | θ̂ (k)
i )

/
∂θ = 0.

The preceding derivations are summarized as Algorithm 4.4 via a complete spec-
ification of the EM-based algorithm for estimating the parameters in θ when new
observation xi is available.

Algorithm 4.4 (EM algorithm for parameter estimation)
(1) Initialization: Initialize the initial parameters in θ̂

(0)
i .

(2) E-Step: Calculate the expectation quantities defined in Eq. (4.34) using Algo-
rithm 4.3, with state-space model of Eqs. (4.7) and (4.8) parameterized by θ̂

(k)
i .

(3) M-Step: Maximize 
(θ | θ̂ (k)
i ) to obtain the updated parameter estimates by

Theorem 4.2.
(4) Test convergence

Test the convergence of the algorithm. If converged, then stop. Otherwise set k =
k + 1, go to Step 2 and repeat.
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4.3.3 Convergence Analysis of Adaptive Model Parameter
Estimation Algorithm

Regarding the convergence of Algorithm 4.4, we first the following result.

Theorem 4.3 Let θ̂
(k+1)

i be generated from θ̂
(k)

i by an iteration algorithm of Algo-

rithm 4.4. Then, L(θ̂
(k+1)

i ) ≥ L(θ̂
(k)

i ), with equality held if and only if both θ̂
(k)

i =
θ̂

(k+1)

i .

Proof Using the above-defined notation and p(X0:i | θ)p(Υi | X0:i , θ) =
p(X0:i , Υi | θ), there is

log p(X0:i | θ) = log p(X0:i , Υi | θ) − log p(Υi | X0:i , θ),

or
L(θ) = 
(θ) − log p(Υk | X0:i , θ). (4.39)

In this case, taking the expectation operator on both sides of (4.39), with respect

to the distribution p(Υi | X0:i , θ̂
(k)

i ), we obtain the following result due to the
factE(g(Y )| Y ) = g(Y ),

L(θ) = 
(θ | θ̂ (k)

i ) − E
Υi |X0:i ,θ̂

(k)
i

{log p(Υi | X0:i , θ)} . (4.40)

The EM algorithm proceeds by maximizing 
(θ | θ̂ (k)

i ) on θ in the hope of

delivering a new estimate θ̂
(k+1)

i which is an improvement relative to θ̂
(k)

i , i.e.,


( θ̂
(k+1)

i

∣∣∣ θ̂ (k)

i ) ≥ 
( θ̂
(k)

i

∣∣∣ θ̂ (k)

i ). The difference between the likelihoods can be

written as

L(θ̂
(k+1)

i ) − L(θ̂
(k)
i ) = 
( θ̂

(k+1)

i

∣∣∣ θ̂ (k)
i ) − 
( θ̂

(k)
i

∣∣∣ θ̂ (k)
i ) + E

Υi |X0:i ,θ̂
(k)
i

{
log p(Υi | X0:i , θ̂

(k)
i )

}

− E
Υi |X0:i ,θ̂

(k)
i

{log p(Υi | X0:i , θ)}

= 
(
ˆ

θ
(k+1)
i

∣∣∣∣ θ̂ (k)
i ) − 
( θ̂

(k)
i

∣∣∣ θ̂ (k)
i )+

∫
log

p(Υi | X0:i , θ̂ (k)
i )

p(Υi | X0:i , θ̂ (k+1)
i )

p(Υi | X0:i , θ̂ (k)
i )dΥi

≥
∫

log
p(Υi | X0:i , θ̂ (k)

i )

p(Υi | X0:i , θ̂ (k+1)
i )

p(Υi | X0:i , θ̂ (k)
i )dΥi

≥ − logE
Υi |X0:i ,θ̂ (k)

i

[
p(Υi | X0:i , θ̂ (k+1)

i )

p(Υi | X0:i , θ̂ (k)
i )

]

= − log
∫

p(Υi | X0:i , θ̂ (k+1)
i )dΥi

= 0. (4.41)
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According to (4.41), L(θ̂ (k+1)
i ) is an increasing function with k, i.e., L(θ̂ (k+1)

i ) ≥
L(θ̂ (k)

i ). If θ̂
(k)
i = θ̂

(k+1)
i , then L(θ̂ (k+1)

i ) = L(θ̂ (k)
i ). As for the equality part in

L(θ̂
(k+1)
i ) ≥ L(θ̂

(k)
i ), the following result can be established.

According to the result in [49], to prove the necessary condition, it is only

required to prove that, if 
( θ̂ (k+1)
i

∣∣∣ θ̂ (k)
i ) = 
( θ̂ (k)

i

∣∣∣ θ̂ (k)
i ) and p(Υi | X0:i , θ̂ (k+1)

i ) =
p(Υi | X0:i , θ̂ (k)

i ), then θ̂
(k)
i = θ̂

(k+1)
i . It is noted that, if 
( θ̂ (k+1)

i

∣∣∣ θ̂ (k)
i ) = 
( θ̂ (k)

i

∣∣∣ θ̂ (k)
i ),

then θ̂
(k+1)
i and θ̂

(k)
i must be the maximal points of 
(θ | θ̂ (k)

i ), according to the under-
lying definition of the EM algorithm. Further, Theorem 4.3 shows that the maximal
point of 
(θ | θ̂ (k)

i ) is unique, and thus θ̂
(k)
i = θ̂

(k+1)
i . As for the sufficient condition

of the equality in L(θ̂ (k+1)
i ) ≥ L(θ̂ (k)

i ), the conclusion is trivial.
This completes the proof.

In addition, we have the following result regarding the relationship among θ∗
i ,

L(θ) and 
(θ | θ∗
i ).

Theorem 4.4 If the EM-based algorithm defined in Algorithm 4.4 terminates at θ∗
i ,

θ∗
i is both stationary point of L(θ) and 
(θ | θ∗

i ), i.e.,

∂L(θ)

∂θ

∣∣∣∣
θ=θ∗

i

= ∂
(θ | θ∗
i )

∂θ

∣∣∣∣
θ=θ∗

i

= 0. (4.42)

Proof According to (4.40), it is obtained that

L(θ) = 
(θ | θ∗
i ) − EΥi |X0:i ,θ∗

i
{log p(Υi | X0:i , θ)} . (4.43)

Then, there is

∂L(θ)

∂θ
= ∂
(θ | θ∗

i )

∂θ
− ∂

∂θ
EΥi |X0:i ,θ∗

i
{log p(Υi | X0:i , θ)} . (4.44)

In the deriving process of Theorem 4.4, we know that, for any θ , the following
holds

EΥi |X0:i ,θ∗
i

{
log p(Υi | X0:i , θ∗

i )
} − EΥi |X0:i ,θ∗

i
{log p(Υi | X0:i , θ)} ≥ 0. (4.45)

That is to say, θ∗
i is the maximum of EΥi |X0:i ,θ∗

i
{log p(Υi | X0:i , θ)} on θ . Then we

directly obtain
∂

∂θ
EΥi |X0:i ,θ∗

i
{log p(Υi | X0:i , θ)}

∣∣∣∣
θ=θ∗

i

= 0. (4.46)

As a result of (4.44), we have



92 4 An Adaptive Remaining Useful Life Estimation Approach with a Recursive Filter

∂L(θ)

∂θ

∣∣∣∣
θ=θ∗

i

= ∂
(θ | θ∗
i )

∂θ

∣∣∣∣
θ=θ∗

i

. (4.47)

From Theorem 4.3 and the assumption that the EM-based algorithm in Algorithm
4.4 terminates at point θ∗

i , we easily obtain

∂
(θ | θ∗
i )

∂θ

∣∣∣∣
θ=θ∗

i

= 0. (4.48)

This completes the proof.

Theorem 4.5 Let {θ̂ (k)
i } be a sequence of the estimates at ti by the EM algorithm in

Algorithm4.4. Then, a limiting point θ∗
i of {θ̂ (k)

i } is a stationary point of L(θ) and{
L(θ̂ (k)

i )
}
converges monotonically to L(θ∗

i ).

Proof The first part can be easily proved by Theorem 4.3. From Theorem 4.4, [47,
49], the second part can also be easily proved.

4.4 A Practical Case Study

In this section, we provide a practical case study for gyros in an inertial navigation
system (INS) to illustrate the application of our model and compare the performance
of our model with the models presented in [19, 32]. In our study, it is found that
STF can generate superior results to Kalman filter to a certain extent. As such, in the
following, we only use STF in the filtering step for illustration. Of course, in practice
which one to use needs to be tested against the model fit. However, due to limited
space, we do not discuss this issue in this chapter. However, the detailed comparisons
between STF and Kalman filter with sudden state changing can be found in [40, 53].

4.4.1 Problem Description

As a key device of the INS in weapon systems and space equipment, an inertial
platform plays an important and irreplaceable role in the INS. Its operating state has
a direct influence on navigation precision. The sensors fixed in an inertial platform
include three gyros and three accelerometers, which measure angular velocity and
linear acceleration, respectively. The gyro fixed on an inertial platform is a mechanical
structure having two degrees of freedom from the driver and sense axis (see [54] for
a general description of inertial navigation platforms and gyros). When the inertial
platform is operating, the wheels of the gyros rotate at very high speeds and can
lead to rotation axis wear. As the wear is accumulated, the bearings on the gyros’
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electric motor will become deformed and such deformation can lead to the drift of the
gyros. The increasing drift finally results in the failure of gyros and then the inertial
platform. Past data show that almost 70% of the failures of inertial platforms result
from gyroscopic drift and such drift is largely resulted from the wear of bearings
as the case of rolling element bearings which are extensively investigated in the
literature. However, the difference of our case is that we use the drift data of gyros to
estimate the RUL rather than the vibration data as rolling element bearings since we
cannot obtain the vibration data as it is not allowed to fix the vibration sensors in the
inertial platform. As such, the drift of gyros is often used as a performance indicator
to evaluate the health condition of an inertial platform and to schedule maintenance
activities.

In this study, we assume that CM values of drift coefficients reflect the perfor-
mance of the inertial platform, and the larger the drift coefficients monitored are,
the worse the performance is. Therefore, according to the CM data and technical
index of the inertial platform, failure prediction can be implemented by modeling
the drift coefficients. The drift coefficients of an inertial platform mainly include
K0X , K0Y , K0Z , KSX , KSY , KI Z , in which K0X , K0Y , K0Z denote constant drift coef-
ficients, and KSX , KSY , KI Z are stochastic drift coefficients, where KSX , KSY denote
the coefficients related to the first moment of specific force along the sense axis, and
KI Z denotes the coefficient related to the first moment of specific force along the
input axis. Generally, the drift degradation measurement along the sense axis, KSX ,
plays a dominant role in the assessment of gyro degradation. In our study, we take
the CM data of KSX as the degradation signals and use them for RUL estimation of
the INS. For our monitored INS in certain weapon system with the terminated life
180.5 h, 73 points of drift coefficients data were collected with regular CM intervals
2.5 h in field condition. The collected data are illustrated in Fig. 4.2.
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Fig. 4.2 He actual gyro’s drift data and the predictions of our model
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In the practice of the INS health monitoring, it is usually required that the drift
measurement along the sense axis should not exceed 0.37 (◦/hour). This threshold
is predetermined at the design stage and is strictly enforced in practice since an INS
is a critical device used in a navigated weapon system.

4.4.2 The Implementation of Our Model for RUL Estimation
of the INS

Using our model, the predictions of the gyro’s drift and the distribution of the RUL
can be obtained at each CM point. Specifically, using our approach initialized by
parameter vector θ0 = [0.002, 0.001, 0.01, 0.01]T , the one step predicted drifting
path by x̂i+1 = xi + λ̂i (ti+1 − ti ) is illustrated in Fig. 4.4 to show the fitness of our
model to the gyro’s drift degradation data. Clearly, the predicted results match with
the actual data well and the mean squared error (MSE) of the predictions is 1.1962E-
4 which is small. This demonstrates that our developed model can model the gyro’s
drift degradation data effectively. Correspondingly, the evolving path of the estimated
parameter vector θ̂ , consisting of a0, P0, Q and σ 2, is illustrated in Fig. 4.3, which
are estimated by Algorithm 4.4.

Figure 4.3 shows that the updated parameters converge quickly as the observed
degradation data are accumulated. In this case, once the parameters converge, further
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Fig. 4.4 Illustration of the PDF of the RUL at six different CM points

updating may be unnecessary. However, such updating is needed for the case that
the degradation process may be subject to unusual changes in its progression. Once
the parameters in the model are updated, the PDF of the estimated RUL can be
calculated at each CM point. It is noted that the RUL estimation at the CM point is
not achieved by successively predicting the degradation state and instead achieved
by calculating the FHT of the degradation process. For example, at the current CM
point ti , after parameters updating we use Eq. (4.2) to describe the degradation
process and estimate the RUL by calculating the FHT distribution of this process
to the failure threshold according to Eqs. (4.11) and (4.17). In the RUL estimation,
both the temporal uncertainty of the degradation process and the uncertainty in drift
parameter are taken into account. Figure 4.4 illustrates the RUL distributions at six
different CM points.

It is noted that the first drift reading is zero according to the model setting. In our
used practical data, the last drift reading is 0.3566 (◦/hour) at the monitoring time
t73 = 180 h. It can be found that this drift reading is very close to the failure threshold
(w = 0.37 (◦/hour)). Therefore, we can consider that the data captures full life cycle
history (useful life) of the machine component. In other words, the actual lifetime of
the gyros in an INS is approximated to be 180.5 h and thus the actual RUL at each
CM point is known from the full life cycle data. As shown in Fig. 4.4, the actual
RUL (denoted by square) falls within the range of the estimated PDF of the RUL at
each CM point from our model and further the estimated PDF of the RUL becomes
sharper as the degradation data are accumulated. This implies that the uncertainty
of the estimated RUL is reduced since more data are utilized during estimating the
model parameters. When we use our predictive model for RUL estimation at a given
CM point, we use the CM data up to that CM point. In other words, if we estimate
the RUL at ti , the data X0:i are used to update the model and for RUL estimation.
Therefore, at the last CM time t73, all the available CM data are used to estimate the
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Fig. 4.5 The estimated mean RUL and the actual RUL at monitoring points t0, t1, . . . , t73

RUL. Figure 4.5 illustrates the performance of our predictive model against the full
life cycle data.

It can be observed that the estimated mean RUL and the actual RUL match each
other well. For example, the relative error between the actual life and the estimated
mean life at t73 is 0.16%. This reflects that the estimated result of our developed
model can match the actual result from the full life cycle data closely.

4.4.3 Comparative Studies

In this part, we conduct some comparative studies with the models presented in [19,
32]. We first compare our model with Wang’s model about their performance of the
RUL estimation for the INS. The detailed implementation process of Wang’s model
can be found in [32].

In order to compare our model with Wang’s model, a loss function is employed
to enable a direct comparison of the distributions for the RUL estimation between
two models. The loss function is the MSE about the actual RUL obtained at each
observation point [4], defined as

MSEi =
∞∫

0

(ri − r̃i )
2 f Ri |X0:i (ri |X0:i ) dri , (4.49)

where r̃i is the actual RUL obtained at ti and f Ri |X0:i (ri |X0:i ) is the estimated PDF
of the RUL.
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Figure 4.6a compares the estimated RUL distributions from our model with
Wang’s model. In both cases, the unknown parameters, such as a0, P0, Q and σ 2, are
obtained by the EM algorithm, but the difference is that our model recursively updates
all parameter estimates whenever a new piece of information is available, whereas
the model in [32] uses the data of past systems to estimate the model parameters and
once estimated they are fixed. Only λ̂i is updated with the new data in Wang’ model.
Clearly, the PDFs of the RULs from both models can cover the actual RULs well as
the obtained data are accumulated. However, it is observed from Fig. 4.6a that the
PDFs of the estimated RULs are typically more dispersed when using Wang’s model.
Figure 4.6b shows the calculated MSE between the actual RUL and the estimated
RUL at each CM point. We can observe that the MSEs using Wang’ model change
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irregularly at different sampling points with relatively large fluctuations, particularly
in the earlier stage of estimation. This implies that the estimated RUL PDFs by
Wang’s model are sensitive to small changes in observations shown in Fig. 4.4. This
may also lead to completely different health management decisions at two consecu-
tive CM points where the actual degradation observations may only have changed a
little as seen from Fig. 4.2. The reason for such behavior seen from Fig. 4.6b stems
from the factor that the distribution p(λi |X0:i ) of the updated drift coefficient is not
considered and the estimated parameters are not recursively updated in [32]. From
Fig. 4.6b, we observe that our model can make the MSEs about the actual RUL at
each CM point less sensitive to small changes. But most importantly our model can
improve the accuracy of the estimated PDFs of the RULs with reduced variances,
see Fig. 4.6. This reduction in variance is due to the use of the complete distribution
of λi via the Bayesian rule shown earlier. These comparisons reflect the superiority
of our model to Wang’s model in the RUL estimation for the INS.

Now, we further compare our model with Gebraeel’s model about their perfor-
mance in the RUL estimation. The detailed implementation process of Gebraeel’s
model can be found in [19]. It is noted that the model in [19] needs prior parameters
as well our model. In order to compare the goodness of fit, the prior parameters
of our model in the following comparison are selected at random at time zero, but
we consider two cases for the prior parameters of Gebraeel’s model. One uses the
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appropriately selected parameters as the prior parameters and the other uses random
prior parameters. Figure 4.7 shows the comparative results.

Figure 4.7a shows that the predicted degradation path. The MSEs between the
actual data and the corresponding predictions of the degradation path for our model
with random prior parameters, Gebraeel’s model with random prior parameters,
and Gebraeel’s model with appropriate prior parameters are 1.179E-4, 0.0026, and
7.9864E-4, respectively. Thus, our model has the best fitting for the degradation
data. We also find that our model is robust with the choice of the prior parameters,
but Gebraeel’s model is not. Figure 4.7b illustrates several estimated PDFs of the
RULs over time using Gebraeel’s model with appropriate prior parameters. It is clear
that the range of PDFs of RULs covers the actual RULs, but the uncertainty in the
estimated RUL of our model is less than that from Gebraeel’s model, particular for
the last few sampling points, since our estimated PDFs of the RULs are sharper
than the results of Gebraeel’s model. However, if the prior parameters in Gebraeel’s
model are selected at random, the estimated RUL may be incorrect as illustrated
in Fig. 4.7c (the observed RULs are outside of the predicted RUL PDF ranges). In
comparison, our model using the random selected prior parameters can produce
reasonable estimates. This demonstrates the merit of our model for RUL estimation
of a particular system. Therefore, if there are no sufficient historical degradation
data at the beginning for selecting the prior parameters, our model may be more
appropriate for RUL estimation.

As noted by Remark 4.2, the moments of the RUL distribution obtained by
Gebraeel’s model do not exist. Therefore, we cannot calculate the MSE about the
actual RUL defined in Eq. (4.49). But, to have a further look at the difference of the
estimated RUL distributions between our exact result and Gebraeel’s approximate
result, it is desired to compare the estimated reliability from both models. Here,
we use F̄Ri |X0:i (ri |X0:i ) = 1 − FRi |X0:i (ri |X0:i ) as the conditional reliability obtained
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from our exact approach at ti , while F̄R′
i |X0:i (ri |X0:i ) as the conditional reliability

obtained from Gebraeel’s model by Pr( R′
i ≤ ri

∣∣X0:i ) = Pr ( X (ri + ti ) ≥ w|X0:i )
at ti . The difference between them at the last CM point is illustrated in Fig. 4.8.

It can be found that the difference between both results is significant. This is due
in part to the many fluctuations existing in the degradation path of gyro’s drift so that
using Pr( L ′

k ≤ lk
∣∣X1:k) = Pr ( X (lk + tk) ≥ w|X1:k) to approximate the RUL will

lead to overestimating of the reliability, as discussed in Remark 4.1. Consequently,
when the approximated result is applied to reliability-centered maintenance, the
obtained decision may be far from the reality.

In sum, this practical case study demonstrates that our developed model can work
well and efficiently. On the other hand, we verify that incorporating the observation
history to date can improve the accuracy of the RUL estimation indeed.
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Chapter 5
An Exact and Closed-Form Solution
to Degradation Path-Dependent RUL
Estimation

5.1 Introduction

Prognostics and health management (PHM) is an efficient and systematic approach
for evaluating the reliability of a system in its actual operating conditions, predicting
failure progression, and mitigating operating risks via management actions [1]. In
PHM, prognostics can yield an advance warning of impending failure in a system,
thereby helping in making maintenance decisions and executing preventive actions.
The past decade has witnessed a constant research interest on various aspects of
PHM due, primarily, to the fact that PHM has been extensively applied in a variety
of fields including electronics, smart grid, nuclear plant, power industry, aerospace
and military application, fleet-industrial maintenance, and public health management
[2–7].

In each of these applications and documents, one critical quantity during prognos-
tics for a system is the prognostic distance within which management decisions and
repair actions can be planned effectively prior to failure occurrence to extend system
life [8, 9]. This prognostic distance is closely associated with the definition of the
remaining useful life (RUL) which is the length of the time from the present to the
end of useful life. In fact, RUL estimation is always a key part in any PHM program
and management can make use of RUL information in condition-based maintenance
(CBM) to produce economic benefits in engineering, maintenance, logistics, and
operations. Therefore, over the past few decades, significant advances have been
made in developing RUL estimation approaches [9].

Stochasticity is one of the main characteristics in system operations that con-
tributes to the uncertainty in estimating the RUL of the system. Therefore, one fun-
damental issue in RUL estimation is to find the probability density function (PDF)
of the RUL. However this also leads to the main difficulty of RUL estimation since
how to make full use of condition monitoring (CM) information to infer a RUL
distribution is a not-well-solved problem. So far, RUL estimation has been regarded
as one of the most central components in PHM [1, 10]. Thus, our primary interest
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Springer Series in Reliability Engineering, DOI 10.1007/978-3-662-54030-5_5

103



104 5 An Exact and Closed-Form Solution to Degradation …

of this chapter is to utilize CM information to adaptively estimate the RUL of the
system and then apply it to support decision-related applications.

The current RUL estimation approaches can be generally classified as physics
of failure, data driven and fusion. Physics of failure approaches rely on the physics
of underlying failure mechanisms. Data-driven approaches achieve RUL estimation
via data fitting mainly including machine learning and statistics based approaches.
The fusion approaches are the combination of the physics of failure and data-driven
approaches. However, for complex or large-scale engineering systems, it is typically
difficult to obtain the physical failure mechanisms in advance or cost-expensive and
time-consuming to capture the physics of failure. In contrast, data-driven approaches
attempt to derive models directly from collected CM and life data, and thus are more
appealing and have gained much attention in recent years [9].

In conventional data-based approaches, estimating the RUL is achieved by eval-
uating the conditional lifetime distribution given that a system has survived up to a
specific time, e.g., T − t|T > t, where T denotes the lifetime [11, 12]. The obtained
RUL distributions from these approaches are generally based on the life character-
istics of a population of identical systems and lifetime data are required. However,
such data are scarce in reality or even nonexistent at all for systems which are costly
or time-consuming to collect the life data [13]. With the advances in CM technolo-
gies, degradation data can be obtained from routine CM as feasible and low-cost
alternatives to estimate the RUL. These data are usually correlated with the underly-
ing physical degradation process. If they are properly modeled, degradation data can
be used to predict unexpected failures and accurately estimate the lifetime of gradu-
ally degraded systems [14, 15]. In general, degradation-data-based methods for RUL
estimation can be classified into the models based on indirectly observed degradation
processes and the models based on directly observed degradation processes [9]. The
former models considered that the degradation state was hidden and assumed that the
available CM data were stochastically related to the underlying degradation state. In
this case, lifetime data must be available to establish the relationship between the CM
data and failure. The latter models utilized the observed degradation data directly to
describe the underlying degradation state of the system. In this chapter, we mainly
focus on the directly observed degradation processes.

One common definition of RUL in the directly observed case is related to the con-
cept of the first passage time (FPT) of the degradation process crossing a predefined
threshold level. The use of the FPT concept as the definition of failure or a termi-
nating event has a long history of application in diverse fields, including medicine,
environmental science, engineering, business, economics, and sociology [16–19]. It
is also acknowledged as a mainstream definition of failure in reliability literature
based on degradation data [20–25]. Thus, in this chapter, we pay particular attention
to a type of degradation-data-based models and derive the RUL distribution based on
the concept of the FPT. Since degradation data are part of CM data, throughout this
chapter, we use terms ‘CM information’ and ‘degradation data’ interchangeably.

In most of degradation-data-based models for RUL estimation, an exact and
closed-form of the RUL distribution in the FPT sense is only available for some
special cases. Frequently, a stepwise approximation or numerical simulation has to
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be used for finding an approximated RUL [2, 24, 26, 27]. In addition, most of these
models either do not use the in situ degradation data during lifetime inference or only
use information contained at the current observation point. However, the degradation
data over the path collected up to date could contain more useful information to make
the RUL estimation more accurate.

The type of models we specifically consider in this work follows the idea in
[28] where two exponential-like degradation models were proposed. In their models,
stochastic parameters were updated via a Bayesian approach to incorporate real-time
CM information. Following [28], many variants and applications have been reported
in prognostics, maintenance, and inventory management [25, 29–32]. However, in
these chapters, they estimated the RUL distribution as the distribution of the time that
it takes the trajectory of the degradation signal to cross the failure threshold based
on an approximated method. In reality, this is not the FPT since the signal may have
already crossed the failure threshold, signifying failure, prior to predicting the RUL.
In extreme cases where the degradation fluctuations are large, this approximation
could be significantly crude from the FPT concept. Even when the Brownian motion
(BM) used as an error term, the availability of the explicit distribution of the FPT
from the BM with a drift, i.e., the inverse Gaussian distribution, was not utilized
in their models. Elwany and Gebraeel in [32] used the FPT to approximate the
mean RUL but the distribution of the RUL was still evaluated by their approximate
approach. As such, the results of RUL estimation in [28] and the followed works
in applications are approximations as opposed to the FPT concept. Furthermore,
in above works, the obtained RUL distributions belong to a family of Bernstein
distributions. Consequently, the moments of the RUL do not exist. But in maintenance
practice, the expectation of the RUL is required to be existent sometimes [7, 33].
Also, the stochastic coefficients in [28] and other following works had some prior
distributions but no elaborated method is presented to select the hyperparameters of
the prior distributions. Typically, several systems’ historical degradation data of the
same type are required to determine the deterministic coefficient and the unknown
parameters in the prior distributions of the stochastic coefficients. But the scarcity
of such historical degradation data of multiple systems is a commonly encountered
case in practice, particularly for newly armed systems. As shown in Sect. 5.5 of this
chapter, an inappropriate selection of these parameters can result in an incorrect
estimate of the RUL.

Driven by the above survey over the related works, the purpose of this chapter is to
develop a degradation path-dependent approach for RUL estimation that allows the
estimated RUL distribution to be dependent on a system’s degradation data history
and to be adaptively updated, at the moment that a newly observed data is avail-
able. In particular, our goal is to shed light on three fundamental issues: (i) RUL
estimation for an individual fielded device without the need of offline data of other
similar systems, (ii) parameter estimation/updating of the degradation model from
the observed degradation data, and (iii) an exact yet closed-form expression of the
RUL distribution given (i) and (ii).

In response to the above issues, the dependency of RUL estimation with a system’s
past degradation path is presented through the combination of Bayesian updating
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and expectation maximization (EM) algorithm. This is a novel contribution of the
chapter and is not fully explored in the conventional RUL modeling paradigms. As
such, the deterministic coefficient and the unknown hyperparameters in the prior
distributions of the stochastic coefficients can be updated when the new degradation
observation is available. Two specific cases of our general approach, a linear model
and an exponential-based model which were considered by [28], are used to illustrate
the implementation of our presented approach. A major contribution of this chapter
under these two special cases is that our approach can obtain an exact yet closed-form
RUL distribution respectively, and we show that the moment of the obtained RUL
distribution from our approach exists. This contrasts sharply with the approximated
results obtained in the literature for the same cases. To our knowledge, the RUL
estimation approach presented in this chapter for the two special cases is the only one
that can provide an exact but closed-form RUL distribution utilizing the monitoring
history.

Furthermore, in our approach the parameter updates in each iteration of the EM
algorithm have explicit formulas. This implies that each iteration of the EM algorithm
can be performed with a single computation, which leads to an extremely fast and
simple estimation procedure. This computation advantage plus the exact yet closed-
form RUL distribution are particularly attractive for practical applications.

We have performed extensive numerical studies to substantiate the superiority
of the proposed approach in comparison with previously reported models. Since the
presented method allows real-time updating the RUL distribution as new observations
from CM are available, such updating mechanism enables the estimates less sensitive
to the selection of parameters in the prior distributions, i.e., our estimation method is
robust with prior or initial parameters, as revealed by the experimental results. This
is another important character since it can make the engineering implementation
rather reliable. We also provide a practical case study to test the performance of the
developed approach in condition-based replacement decision-making. The use of
our estimated RUL in CBM decision-making allows us to generate new insights on
the effect of the estimated RUL from CM data upon decision-making and to explore
in more detail of how estimated parameters influence the RUL estimation and further
the replacement decision.

The remainder parts are organized as follows. Section 5.2 first constructs a general
stochastic process based degradation model and then presents a degradation path-
dependent approach for adaptive RUL estimation via real-time CM data. Sections 5.3
and 5.4 consider a linear model and an exponential model for illustrating the working
mechanism of the proposed approach, respectively. Section 5.5 provides several sim-
ulations and a case study to illustrate the application and usefulness of the developed
approach.
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5.2 A Degradation Path-Dependent Approach for Adaptive
RUL Estimation

In the following, a general parametric degradation model is developed first and then
we present a degradation path-dependent approach that utilizes online CM sensory
information to adaptively compute RUL distribution.

5.2.1 A General Description of Stochastic Process Based
Degradation Models

As discussed previously, a degradation process is stochastic in nature due to inher-
ent randomness in manufacturing and operations. Therefore, it is natural to model a
degradation process as a stochastic process [20, 21, 23]. In this chapter, the degra-
dation model is represented as a stochastic process {X(t), t ≥ 0} where X(t) is the
degradation signal at t. As mentioned earlier, a degradation signal is a characteristic
pattern from the sensory information that captures the physical transitions associ-
ated with the degradation process. Some examples of degradation signals have been
extensively illustrated in the literature, such as [34, 35].

Usually, a degradation model consists of deterministic and stochastic parts. The
deterministic part represents a constant physical phenomenon common to all sys-
tems of a given population. While the stochastic part captures the variation of the
degradation process of an individual system, particularly represented by a probability
distribution. The stochastic part of the noise and random effects associated with the
degradation signals are usually represented by a random term ε(t), which is modeled
as a stochastic process in this chapter.

With the above considerations in place, and without loss of generality, we assume
that the degradation X(t) at time t can be represented by the following general
expression,

X(t) = h(t, ε(t); θ ,φ), (5.1)

where X(t) is driven by a function h(·) with stochastic process ε(t), characterizing
the dynamics/uncertainty of the degradation process with θ and φ as the parameters.
The functional form h(·) depends on the type of the system under consideration and
represents a relationship between the operating time and the degradation signal. This
functional form may follow a linear, polynomial, exponential, or any other trend.
Considering that each system possibly experiences different sources of variations
during its operation, for a degradation model to be realistic, we treat θ as a random-
effect vector representing unit-to-unit variability, and φ as a fixed effect vector that is
common to all systems. For simplicity, we assume that θ and ε(t) are s-independent.
The ideas of random effects and the independent assumption between θ and ε(t)
have been widely used in degradation modeling literature [22, 24, 28, 34].
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5.2.2 A Degradation Path-Dependent Approach for Adaptive
RUL Estimation via Real-Time CM Data

We have established the degradation model using a general stochastic process. We
now illustrate how to estimate the RUL based on the established model. Define
X1:k = {x1, x2, . . . , xk} as the observed degradation at CM times t1, t2, . . . , tk , which
could be irregularly spaced. It is noted that the degradation modeling paradigm for
RUL estimation in most of conventional models is based on one assumption that the
estimated PDF of RUL depends only on the currently observed degradation data,
xk . As such, it is highly desired to construct a model which can be conditional on
all the data up to tk , that is, X1:k . Consequently, using the FPT of the degradation
process {X(t), t ≥ 0} crossing the threshold w and conditional on the observation
history X1:k , we define RUL Lk at time tk as

Lk = inf { lk : X(lk + tk) ≥ w|X1:k}. (5.2)

with PDF fLk |X1:k (lk|X1:k) and cumulative distribution function (CDF) FLk |X1:k
(lk|X1:k). It can be observed from Eq. (5.2) that the defined RUL is degradation
path-dependent.

Now we need to focus on how to estimate fLk |X1:k (lk|X1:k) in an adaptive way,
namely, when the newly observed data is available, the PDF of the RUL can
be updated in order to make the estimated RUL depend on X1:k . In order to
compute fLk |X1:k (lk|X1:k), considering the stochastic nature of θ , we can formulate
fLk |X1:k (lk|X1:k) by the law of total probability as follows,

fLk |X1:k (lk|X1:k) =
∫

fLk |θ ,X1:k (lk|θ,X1:k)p(θ |X1:k)dθ , (5.3)

From Eq. (5.3), fLk |θ ,X1:k (lk|θ ,X1:k) and p(θ |X1:k) must be known, and the
unknown parameter φ is needed to be estimated from X1:k , for the sake of cal-
culating fLk |X1:k (lk|X1:k). There are four steps which are shown below to accomplish
the task.

Step 1: Determine prior information for θ

As for the stochastic parameter vector, θ , it can be specified as a prior distribution
as p(θ) in a Bayesian framework. The prior distribution of p(θ) contains hyperpara-
meter a. Once the observed data and the sampling distribution p(X1:k| θ) are avail-
able, the posterior distribution of θ , p(θ |X1:k), can be computed by the Bayesian rule.
During the course of selecting the prior distribution, p(θ), one convenient way is to
make p(θ) belong to the conjugate family of the sampling distributions, p(X1:k| θ),
which can lead to a tractable posterior distribution of θ . In our illustration cases, we
use such method to make the posterior distribution of θ tractable.
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Step 2: Update the posterior distribution for θ

Once a new observation at tk is available, the posterior distribution of θ can be
updated via the Bayesian rule as follows,

p(θ |X1:k) = p(X1:k| θ) · p(θ)

p(X1:k)
∝ p(X1:k| θ) · p(θ). (5.4)

If analytical p(θ |X1:k)is not available, Gibbs sampling or Metropolis–Hastings
algorithm can be used to simulate all distributions [36, 37]. In this chapter, we do not
consider the general case involving such as Gibbs sampling, but construct a conjugate
prior distribution for the special cases considered in this chapter instead.

From Eq. (5.4) and using the chain rule in probability, we have

p(θ |X0:k) = p(X0:k, θ)

p(X0:k)
= p(xk|X0:k−1, θ) · p(θ |X0:k−1)p(X0:k−1)

p(X0:k)

= p(xk|X0:k−1, θ) · p(θ |X0:k−1)

p(xk|X0:k−1)

∝ p(xk|X0:k−1, θ) · p(θ |X0:k−1). (5.5)

Equation (5.5) shows the recursive relationship between the prior at tk−1 and the
newly observed information at tk .

Step 3: Estimate the unknown parameters via the EM algorithm
Now we return to estimate unknown parameters φ in Eq. (5.1) and parameters a

in prior distribution p(θ). For simplicity, we denote unknown parameter vector con-
sisting of φ and a as Θ = [φ, a]. In order to estimate Θ , we calculate the maximum
likelihood estimation (MLE) of Θ once new observation xk is available. In this case,
the log-likelihood function for X1:k can be written as

�k(Θ) = log[p(X1:k|Θ)], (5.6)

where p(X1:k|Θ) is the joint PDF of the degradation data X1:k .
Then the MLE Θ̂k of Θ conditional on X1:k can be obtained by

Θ̂k = arg max
Θ

�k(Θ). (5.7)

Due to the random effect and unobservability of θ , Eq. (5.7) will be too difficult to
maximize with respect toΘ . However, the EM algorithm [38] provides a possible way
for resolving this difficulty. The essential idea in the EM algorithm is to manipulate
the relationship between p(X1:k| Θ) and p(X1:k, θ | Θ) via the Bayesian rule so that
estimating Θ can be achieved by two steps: E-step and M-step.

• E-step: Calculate

�(Θ| Θ̂ (i)

k ) = E
θ |X0:k ,Θ̂

(i)

k
{log p(X0:k, θ | Θ)} , (5.8)
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where Θ̂
(i)

k denotes the estimated parameters in the ith step conditional on X1:k .

• M-step: Calculate

Θ̂
(i+1)

k = arg max
Θ

�(Θ| Θ̂ (i)

k ). (5.9)

The above steps are iterated multiple times to produce a sequence {Θ̂ (0)

k , Θ̂
(1)

k ,

Θ̂
(2)

k , . . .} of increasingly good approximations Θ̂
∗
k to Θ̂k . The iterations are usually

terminated using a standard criterion such as the difference between Θ̂
(i)

k and Θ̂
(i+1)

k
falling below a predefined threshold. The properties of the convergence of the log-
likelihood function and parameter estimates are discussed in [38, 39].

Step 4: Update the RUL distribution conditional on the observed information
After obtaining the required fLk |θ ,X1:k (lk|θ,X1:k), p(θ |X1:k), and estimated Θ con-

ditional on X1:k in previous three steps in place, the updated PDF and CDF of the
RUL at time tk can be formulated via the law of total probability as follows,

fLk |X1:k (lk |X1:k) =
∫ +∞

−∞
fLk |θ,X1:k (lk |θ ,X1:k)p( θ |X1:k)dθ = E θ |X1:k

[
fLk |θ ,X1:k (lk |θ ,X1:k)

]
,

(5.10)

FLk |X1:k (lk |X1:k) =
∫ +∞

−∞
FLk |θ ,X1:k (lk |θ ,X1:k)p( θ |X1:k)dθ = E θ |X1:k

[
FLk |θ,X1:k (lk |θ ,X1:k)

]
.

(5.11)

Clearly, fLk |X1:k (lk|X1:k) contains the whole history of observation to tk , which
is introduced by two updating procedures, updating θ via the Bayesian rule and
then updating Θ via the EM algorithm. In the subsequent sections, we will give two
specific models based on above-presented framework to illustrate the implementation
process of our presented degradation path-dependent approach. Let us first consider
a linear degradation model for RUL estimation.

5.3 Linear Model

The linear degradation model is typically used for modeling degradation processes
where the degradation rate is approximately a constant, see [28, 31, 32, 40]. In
this chapter, we consider a linear degradation model based on a Wiener process as
follows,

X(t) = φ + θ t + σB(t), (5.12)

where φ is the initial degradation, θ and σ are the drift and diffusion parameters,
and B(t) denotes the standard BM, which represents the stochastic dynamics of the
degradation process, as denoted by ε(t) in Eq. (5.1). In this model, we assume that θ is
the stochastic coefficient while φ and σ are deterministic. Without loss of generality,
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we further assume t0 = 0 and x0 = 0 and thus φ = 0 in this case. Now, we illustrate
the step-by-step implementation of our approach presented in Sect. 5.2.

Step 1: Determine the prior distribution
In Eq. (5.12), stochastic parameter θ is generally assumed to follow a prior dis-

tribution, p(θ). Here we assume that θ is normally distributed with mean μ0 and
variance σ 2

0 . Then according to the properties of the standard BM, for given θ , the
sampling distribution of X1:k = {x1, x2, . . . , xk} is multivariable normal, distributed
by the following expression,

p(X1:k | θ) = 1∏k
j=1

√
2πσ 2(tj − tj−1)

exp

[
−
∑k

j=1

(
xj − xj−1 − θ(tj − tj−1)

)2
2σ 2(tj − tj−1)

]
.

(5.13)

In Bayesian framework, in order to calculate posteriorp(θ |X1:k), it is assumed that
the prior distribution of θ followsN(μ0, σ

2
0 ). Note that such prior distribution actually

falls into the conjugate family of sampling distribution p(X1:k| θ). Consequently,
the posterior estimate of θ conditional on X1:k is still normal, that is, θ |X1:k ∼
N(μθ,k, σ

2
θ,k). Other prior distributions can also be used, but evaluating the posterior

may involve numerical techniques such as Gibbs sampler.
Step 2: Posterior estimate of random parameter
Given θ ∼ N(μ0, σ

2
0 ), p(θ |X1:k) can be calculated from Eq. (5.4) as

p(θ |X0:k) ∝ p(X0:k| θ) · p(θ)

∝ exp

{
−
∑k

j=1

(
xj − xj−1 − θ(tj − tj−1)

)2
2σ 2(tj − tj−1)

}
· exp

{
− (θ − μ0)

2

2σ 2
0

}

∝ exp

{
− (θ − μθ,k)

2

2σ 2
θ,k

}
. (5.14)

Due to the property of the normal distribution of θ |X1:k , we can obtain,

p(θ |X1:k) = 1

σθ,k

√
2π

exp

[
− (θ − μθ,k)

2

2σ 2
θ,k

]
, (5.15)

with
μθ,k = (μ0σ

2 + xkσ 2
0 )/(tkσ 2

0 + σ 2)

σ 2
θ,k = σ 2σ 2

0 /(tkσ 2
0 + σ 2)

, (5.16)

where we can learn that the posterior estimate of θ can be easily updated once new
observation is available.

Remark 5.1 It is noted that, if we write the mean drift as μθ,k = xk
/
tk , the posterior

estimate of θ in Eq. (5.16) can be rewritten as μθ,k = w1μθ,k + w2μ0, where w1 =
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tkσ 2
0

/
(tkσ 2

0 + σ 2) and w2 = σ 2
/
(tkσ 2

0 + σ 2), and σ 2
θ,k = σ 2σ 2

0

/
(tkσ 2

0 + σ 2) < σ 2
0 .

It is easily verified that σ 2
θ,k decreases monotonically approaching σ 2

/
tk as tk → ∞,

namely, the uncertainty about the true value of θ decreases. μθ,k is a linearly weighted
combination of μθ,k and μ0 with weighted coefficients w1 and w2. Thus μθ,k always
lies somewhere between μθ,k and μ0. It approaches μθ,k as tk → ∞. Therefore, if
we have the adaptive adjustment mechanism for the prior parameters μ0, σ 2

0 , and
fixed parameter σ 2, the initial guess of the true θ will be hopefully improved so as
to make it closer to the new mean drift with less uncertainty. This motivates us to
develop such adjustment mechanism in Step 3.

Now let us first focus on how to calculate fLk |θ,X1:k (lk|θ,X1:k) at tk and then go
the further details about the parameters updating for μ0, σ 2

0 , and σ 2. Note that we
consider the case of the directly observed degradation process (e.g., at the current CM
point tk , the current degradation state xk is observed). Therefore, for in service RUL
estimation at tk , given θ and xk , we can translate the original degradation process as,

X(t) = xk + θ(t − tk) + σ (B(t) − B(tk)) , t ≥ tk . (5.17)

Further translating this model with time scale over residual time lk , i.e., RUL, as,

X(lk + tk) = xk + θ lk + σ (B(lk + tk) − B(tk)) . (5.18)

In order to calculate fLk |θ,X1:k (lk|θ,X1:k), we first show that the following holds in
general.

Theorem 5.1 Given tk, for any t ≥ 0, the stochastic process, {W (t), t ≥ 0}, with
W (t) = B(t + tk) − B(tk) is still a standard BM, where {B(t), t ≥ 0} is a standard
BM.

Proof We only need to check that the following properties hold for {W (t), t ≥ 0}:
(i) {W (t), t ≥ 0} is a Gaussian process with continuous path; (ii) E [W (t)] = 0; and
(iii) E [W (t)W (s)] = min{s, t}.The first two are easy to check via the properties of
the standard BM {B(t), t ≥ 0}. Here, we only need to show that the last property is
true for {W (t), t ≥ 0}. We have

E [W (t)W (s)] = E
{[
B(t + tk) − B(tk)

] [
B(s + tk) − B(tk)

]}
= E

[
B(t + tk)B(s + tk)

]− E
[
B(tk)B(s + tk)

]− E
[
B(tk)B(t + tk)

]− E
[
B(tk)B(tk)

]
= min{t + tk, s + tk} − tk = min{s, t}. (5.19)

This completes the proof.

Based on Theorem 5.1 and Eq. (5.18), the estimated RUL at tk can be calculated
as the FPT of the following process

{
X ′(lk), lk ≥ 0

}
crossing threshold w,

X ′(lk) = xk + θ lk + σ (B(lk + tk) − B(tk)) = xk + θ lk + σW (lk), lk ≥ 0, (5.20)
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with
W (lk) = B(lk + tk) − B(tk). (5.21)

Therefore,
{
X ′(lk), lk ≥ 0

}
is still a BM with a drift part θ lk and initial value

X ′(0) = xk .
We further show that the following holds.

Theorem 5.2 Once X1:k is available at tk, the followings hold,

FLk |θ,X0:k (lk|θ,X0:k) = FLk |θ,X(tk)=xk (lk|θ, xk), fLk |θ,X0:k (lk|θ,X0:k)
= fLk |θ,X(tk)=xk (lk|θ, xk). (5.22)

Proof By the Markov property of the Wiener process,

FLk |θ,X0:k (lk|θ,X0:k) = Pr(Lk ≤ lk|θ,X0:k)
= Pr(inf { lk : X(lk + tk) ≥ w|X0:k} ≤ lk|θ,X0:k)
= Pr(inf { lk : X(lk + tk) ≥ w|X(tk) = xk} ≤ lk)

= FLk |θ,X(tk)=xk (lk|θ, xk). (5.23)

The second term of Theorem 5.2 follows immediately. This completes the proof.

Note the FPT of BM with a drift follows an inverse Gaussian distribution. From
Theorem 5.2 and Eq. (5.21), it is direct to obtain the PDF and CDF of the RUL at tk ,
associated with Eq. (5.19), as follows,

fLk |θ,X0:k (lk |θ,X0:k) =fLk |θ,X(tk)=xk (lk |θ, xk) = w − xk√
2π l3kσ

2
exp

{
− (w − xk − θ lk)

2

2σ 2lk

}
,

(5.24)

FLk |θ,X0:k (lk |θ,X0:k) =1 − Φ

(
w − xk − θ lk

σ
√
lk

)
+

exp

{
2θ(w − xk)

σ 2

}
Φ

(−(w − xk) − θ lk
σ
√
lk

)
. (5.25)

In the next step, we illustrate how to estimate the unknown parameters Θ =
[σ 2, a] = [σ 2, μ0, σ

2
0 ]. In order to incorporate the updating nature of Θ , we use

Θk = [σ 2
k , μ0,k, σ

2
0,k] to denote the parameter needed to be estimated based on X1:k

and the estimated parameters are denoted by Θ̂k = [σ̂ 2
k , μ̂0,k, σ̂

2
0,k].

Step 3: Estimate deterministic parameters based on EM algorithm
In order to estimate Θk , from Eq. (5.8), we first evaluate the complete log-

likelihood function ln p(X1:k, θ | Θk), which is
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ln p(X0:k, θ | Θk) = ln p(X0:k| θ,Θk) + ln p(θ | Θk)

= − k + 1

2
ln 2π − 1

2

∑k

j=1
ln(tj − tj−1) − k

2
ln σ 2

k −
∑k

j=1

(
xj − xj−1 − θ(tj − tj−1)

)2
2σ 2

k (tj − tj−1)
− 1

2
lnσ 2

0,k − (θ − μ0,k)
2

2σ 2
0,k

.

(5.26)

Given Θ̂
(i)

k = [σ̂ 2
k

(i)
, μ̂

(i)
0,k,

ˆσ 2
0,k

(i)] as the estimate in the ith step based on X1:k , the

expectation �(Θk| Θ̂ (i)

k ) of ln p(X1:k, θ | Θk), can be computed as follows.

�(Θk
∣∣ Θ̂(i)

k ) =E
θ |X0:k ,Θ̂

(i)
k

{
ln p(X0:k , θ

∣∣Θk)
}

= − k + 1

2
ln 2π − 1

2

∑k

j=1
ln(tj − tj−1)− k

2
ln σ 2

k −
∑k

j=1

(xj − xj−1)2 − 2μθ,k(tj − tj−1)(xj − xj−1) + (tj − tj−1)2(μ2
θ,k + σ 2

θ,k)

2σ 2
k (tj − tj−1)

−

1

2
ln σ 2

0,k −
μ2

θ,k + σ 2
θ,k − 2μθ,kμ0,k + μ2

0,k

2σ 2
0,k

. (5.27)

Let ∂�( Θk |Θ̂ (i)

k )

∂Θk
= 0, we obtain Θ̂

(i+1)

k as follows,

σ̂ 2
k

(i+1) = 1

k

∑k

j=1

(xj − xj−1)
2 − 2μθ,k(tj − tj−1)(xj − xj−1) + (tj − tj−1)

2(μ2
θ,k + σ 2

θ,k)

(tj − tj−1)
,

(5.28)

μ̂
(i+1)

0,k = μθ,k

ˆσ 2
0,k

(i+1) = σ 2
θ,k

. (5.29)

Theorem 5.3 Θ̂
(i+1)

k obtained by Eqs. (5.28) and (5.29) is uniquely determined and

located at the maximum of �(Θk| Θ̂ (i)

k ).

Proof From Eq. (5.25), we can learn that Θ̂
(i+1)

k obtained by Eqs. (5.26) and

(5.27) is the only solution satisfying ∂�(Θk| Θ̂ (i)

k )/∂Θk = 0. Consequently, taking

∂2�(Θk| Θ̂ (i)

k )/∂Θk∂ΘT
k , the following is obtained,

∂2�(Θk| Θ̂ (i)

k )

∂Θk∂ΘT
k

=

⎡
⎢⎢⎣

k
2σ 4

k
− φ

σ 6
k

0 0

0 − 1
σ 2

0,k

μθ,k−μ0,k

σ 4
0,k

0 μθ,k−μ0,k

σ 4
0,k

1
2σ 4

0,k
− ψ

σ 6
0,k

⎤
⎥⎥⎦ , (5.30)
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with

ψ = μ2
θ,k + σ 2

θ,k − 2μθ,kμ0,k + μ2
0,k,

φ =
∑k

j=1

(xj − xj−1)
2 − μθ,k(tj − tj−1)(xj − xj−1) + (tj − tj−1)

2(μ2
θ,k + σ 2

θ,k)

(tj − tj−1)
.

(5.31)

We show that the matrix in (5.31) is negative definite at Θk = Θ̂
(i+1)

k , by calcu-
lating the order principal minor determinant as follows,

Δ1 = k

2σ 4
k

− φ

σ 6
k

,Δ2 = − 1

σ 2
0,k

Δ1,Δ3 =
(

1

2σ 4
0,k

− ψ

σ 6
0,k

− (μθ,k − μ0,k)
2

σ 6
0,k

)
Δ2.

(5.32)

Then, at Θk = Θ̂
(i+1)

k , the followings are obtained,

Δ1|
Θ=Θ̂

(i+1)

k
= − k3

2φ2
< 0,

Δ2|
Θ=Θ̂

(i+1)

k
= − 1

σ 2
θ,k

Δ1|
Θ=Θ̂

(i+1)

k
> 0,

Δ3|
Θ=Θ̂

(i+1)

k
= Δ2|

Θ=Θ̂
(i+1)

k
= − 1

2σ 4
θ,k

Δ2|
Θ=Θ̂

(i+1)

k
< 0.

This proves that the matrix in (5.30) is negative definite at Θk = Θ̂
(i+1)

k . This con-

clusion plus the result that Θ̂
(i+1)

k is the only solution satisfying ∂�(Θk| Θ̂ (i)

k )/∂Θk =
0 verifies Theorem 5.3.

Remark 5.2 It is observed from Theorem 5.3 that the M-step in our approach can be
solved analytically and obtains the unique maximum point. In other words, parameter
updates in each iteration of the EM algorithm have explicit formulas. This implies
that each iteration of the EM algorithm can be performed with a single computation,
which leads to an extremely fast and simple estimation procedure. This computation
advantage is particularly attractive for practical applications.

Step 4: Exact and closed-form solution to degradation path-dependent RUL
estimation

We note that the estimated RUL by Eqs. (5.24) and (5.25) only uses the current
degradation data, but not the system’s degradation history before tk . As discussed
previously, ideally the future FPT depends on the path that the degradation has
involved to date. In this step, we attempt to achieve such desired feature, i.e., to
obtain fLk |X1:k (lk|X1:k).

In order to calculate fLk |X1:k (lk|X1:k), we first present the following two results.
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Lemma 5.1 If Y ∼ N(0, 1) and λ, γ,∈ R, then EY
[
Φ(λ + γY)

]
can be formulated

as
EY
[
Φ(λ + γY)

] = Φ
(
λ
/√

γ 2 + 1
)

.

Proof We have

EY
[
Φ(λ + γY)

] = E
[
E(I{Z≤λ+γY}

∣∣Y)
∣∣Y] = Pr(Z ≤ λ + γY)

= Pr(Z − λ − γY ≤ 0) = Φ
(
λ
/√

γ 2 + 1
)

.

In the derivation process, Φ denotes the standard normal CDF, I{Z≤λ+γY} is
the indicator function, Z is standard normal and independent of Y and Z − Y ∼
N(−λ, γ 2 + 1). This completes the proof.

Theorem 5.4 If Z ∼ N(μ, σ 2), and w,A,B,D ∈ R,C ∈ R+, then the following
holds:

EZ
[
exp(AZ)Φ(C + DZ)

] = exp

(
Aμ + A2

2
σ 2
)

· Φ

(
C + Dμ + ADσ 2

√
1 + D2σ 2

)
, (5.33)

EZ

[
(A − Z) · exp

(
−(B − Z)2/2C

)]
=
√

C

σ 2 + C

(
A − σ 2B + μC

σ 2 + C

)
exp

(
− (B − μ)2

2
(
σ 2 + C

)
)

.

(5.34)

Proof (1) Through some algebraic manipulations, using Lemma, we have

EZ
[
exp(AZ)Φ(C + DZ)

] = 1√
2πσ 2

∫
exp

(
− (z − μ)2

2σ 2

)
exp(Az)Φ(C + Dz)dz

= 1√
2πσ 2

∫
exp

(
− z2 − 2(μ + Aσ 2)z + μ2

2σ 2

)
Φ(C + Dz)dz

= 1√
2πσ 2

· exp

(
Aμ + A2

2
σ 2
)

·
∫

exp

(
−
(
z − (μ + Aσ 2)

)2
2σ 2

)
Φ(C + Dz)dz

= 1

σ
exp

(
Aμ + A2

2
σ 2
)∫

ϕ

(
z − (μ + Aσ 2)

σ

)
Φ(C + Dz)dz

= exp

(
Aμ + A2

2
σ 2
)∫

ϕ(u)Φ(C + Dμ + ADσ 2 + Dσu)du

= exp

(
Aμ + A2

2
σ 2
)

· Φ

(
C + Dμ + ADσ 2

√
1 + D2σ 2

)
.

This completes the proof of the first equation in Theorem 5.4.
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(2) Due to the limited space, we only summarize the main results below:

EZ

[
(A − Z) · exp

(
− (B − Z)2

2C

)]
= AI1 − I2,

where I1 and I2 can be formulated separately as follows,

I1 = EZ

[
exp

(
− (B − Z)2

2C

)]
= 1√

2πσ 2
exp

(
−σ 2B2 + μC

2σ 2C

)∫ ∞

−∞
exp

(
− z2 − 2φz

ψ

)
dz

= 1√
2πσ 2

exp

(
−σ 2B2 + μ2C

2σ 2C

)
· exp

(
φ2

ψ

)∫ ∞

−∞
exp

(
− (z − φ)2

ψ

)
dz

=
√

ψπ√
2πσ 2

exp

(
−σ 2B2 + μ2C

2σ 2C

)
· exp

(
φ2

ψ

)

=
√

C

σ 2 + C
exp

(
− (B − μ)2

2
(
σ 2 + C

)
)

.

with φ = (σ 2B + μC
)
/
(
σ 2 + C

)
, ψ=2σ 2C/

(
σ 2 + C

)
. In a similar way, I2 can be

written as

I2 = EZ

[
Z exp

(
− (B − Z)2

2C

)]

= 1√
2πσ 2

exp

(
−σ 2w2 + μC

2σ 2C
+ φ2

ψ

)
·
∫ ∞

−∞
z exp

(
− (z − φ)2

ψ

)
dz

=
√

ψ√
2πσ 2

exp

(
−σ 2B2 + μ2C

2σ 2C

)
· exp

(
φ2

ψ

)
·
∫ ∞

−∞

(
φ + u

√
ψ
)

exp
(−u2)du

=
√

ψ√
2πσ 2

exp

(
−σ 2B2 + μ2C

2σ 2C

)
· exp

(
φ2

ψ

)
· φ

√
π = φI1.

Then, the final result can be written directly

EZ
[
(A − Z) · exp

(−(B − Z)2/2C
)] = AI1 − I2 = (A − φ) I1

=
√

C

σ 2 + C

(
A − σ 2B + μC

σ 2 + C

)
exp

(
− (B − μ)2

2
(
σ 2 + C

)
)

.

This completes the proof of the second equation in Theorem 5.4.

The updated RUL distribution at time tk can be summarized in the following
theorem by using Lemma 5.1 and Theorem 5.5.
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Theorem 5.5 The PDF and CDF of the RUL conditional on the observations up to
tk can be written as

fLk |X0:k (lk |X0:k) = w − xk√
2π l3k

(
σ 2

θ,k lk + σ 2
) exp

⎧⎨
⎩−

(
w − xk − μθ,k lk

)2
2lk
(
σ 2

θ,k lk + σ 2
)
⎫⎬
⎭ , lk > 0, (5.35)

FLk |X0:k (lk |X0:k) = 1 − Φ

⎛
⎝w − xk − μθ,k lk√

σ 2
θ,k l

2
k + σ 2lk

⎞
⎠+

exp

{
2μθ,k(w − xk)

σ 2 + 2σ 2
θ,k(w − xk)2

σ 4

}
Φ

⎛
⎝−2σ 2

θ,k(w − xk)lk + σ 2
(
μθ,k lk + w − xk

)
σ 2
√

σ 2
θ,k l

2
k + σ 2lk

⎞
⎠ ,

(5.36)

where the degradation history is introduced by parameters updating.

Proof Using Eqs. (5.15), (5.16), (5.22), (5.23) and the total law of probability, we
have

fLk |X0:k (lk|X0:k) =
∫ ∞

−∞
fLk |θ,X0:k (lk|θ,X0:k)p(θ |X0:k)dθ

= E θ |X0:k
[
fLk |θ,X0:k (lk|θ,X0:k)

]

= w − xk√
2π l3kσ

2
E θ |X0:k

[
exp

{
− (w − xk − θ lk)

2

2σ 2lk

}]

= w − xk√
2π l3kσ

2

√
σ 2lk

σ 2lk + σ 2
θ,kl

2
k

exp

{
− (w − xk − μθ,klk)2

2lk
(
σ 2 + σ 2

θ,klk
)
}

. (5.37)

The last equation is implied by the second result of Theorem 5.4.

FLk |X0:k (lk|X0:k) =
∫ ∞

−∞
FLk |θ,X0:k (lk|θ,X0:k)p(θ |X0:k)dθ

=E θ |X0:k
[
FLk |θ,X0:k (lk|θ,X0:k)

]

=1 − E θ |X0:k

[
Φ

(
w − xk − θ lk

σ
√
lk

)]
+

E θ |X0:k

[
exp

{
2θ(w − xk)

σ 2

}
Φ

(−(w − xk) − θ lk
σ
√
lk

)]
. (5.38)

Following the first result in Theorem 5.4, it is straightforward to obtain Eq. (5.32).
This completes the proof.
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So far, we have accomplished our presented degradation path-dependent approach
for RUL estimation in the linear case. In the following, we give some remarks through
comparing our approach with previously reported approaches.

Remark 5.3 The results in [28] and the related works directly used Pr(Lk ≤ lk|
X1:k) = Pr (X(lk + tk) ≥ w|X1:k) to calculate the RUL distribution, which ignored
the possible hitting events within (tk, tk + lk). This implies that their results are
approximate in the sense of the FPT. However, our obtained results in Eqs. (5.35)
and (5.36) are exact but with explicit form.

In order to further compare the obtained results with the results by [28], we first
introduce the concept of stochastic comparison between two random variables.

Definition 5.1 ([41]) Given random variables ξ and ζ , ξ is stochastically greater
than ζ if Pr(ξ > v) ≥ Pr(ζ > v), for all real v, denoted by ξ ≥st ζ .

Denote the estimated RUL by Gebraeel’s approach as L′
k , then we have the fol-

lowing conclusion.

Theorem 5.6 Conditional on the degradation history to tk, i.e., X1:k, and adopting
the same parameter estimation procedure, we have L′

k ≥st Lk.

Proof As mentioned in Remark 5.2, in Gebraeel et al. (2005), they directly used
Pr(L′

k ≤ lk
∣∣X1:k) = Pr (X(lk + tk) ≥ w|X1:k) to estimate the RUL distribution. As

a result, the CDF of the estimated RUL can be written as

FL′
k |X0:k (lk|X0:k) = 1 − Φ

⎛
⎝w − xk − μθ,klk√

σ 2
θ,kl

2
k + σ 2lk

⎞
⎠ . (5.39)

Compared with Eq. (5.32), it is obviously observed that the following holds,

FL′
k |X0:k (lk|X0:k) ≤ FLk |X0:k (lk|X0:k), (5.40)

Namely, we have

Pr(L′
k ≥ lk|X0:k) ≥ Pr(Lk ≥ lk|X0:k). (5.41)

Then according the given definition by Eq. (5.33), the proof is completed.

From Theorem 5.6, the result following the approach developed by [28] overes-
timates the RUL and then can lead to under-maintenance or delayed-maintenance.

Remark 5.4 The moment of the RUL distribution obtained by [28, 32], does not exist
since their obtained RUL distributions belong to the family of Bernstein distributions,
known without moments, but this is not the case for our result. For example, the mean
of RUL can be easily formulated by
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E(Lk|X0:k) = E [E(Lk| θ,X0:k)|X0:k] = E

(
w − xk

θ

∣∣∣∣X0:k
)

= w − xk
σ 2

θ,k

exp

{
− μ2

θ,k

2σ 2
θ,k

}∫ μθ,k

0
exp

{
u2

2σ 2
θ,k

}
du

=
√

2 (w − xk)

σθ,k
D

(
μθ,k√
2σθ,k

)
, (5.42)

where D(z) = exp(−z2)
∫ z

0 exp(u2)du is the Dawson integral, which is known to
exist. Particularly, if we assume Pr(θ < 0) = 0, which implies μθ,k � σθ,k . Then
using the approximation property of Dawson integral for large z, D(z) ≈ 1/2z, then
E(Lk|X1:k) = (w − xk) /μθ,k .

The PDF and CDF in Eqs. (5.35) and (5.36) enable the construction of a replace-
ment decision model that incorporates the probability of failure before a particular
instant conditioned on the degradation history to date. At each monitoring point
throughout the life of a system, an optimal replacement time can be scheduled using
the renewal-reward theory and the long run expected cost per unit time. When the
RUL distribution is used in condition-based replacement, the following is usually
minimized to decide the optimal replacement time [2],

C(TR,k) = cp + (cf − cp) Pr(Lk < TR,k − tk
∣∣X1:k)

tk + (TR,k − tk)
(
1 − Pr(Lk < TR,k − tk

∣∣X1:k)
)+

TR,k−tk∫
lk=0

lk fLk |X1:k (lk |X1:k)dlk

,

(5.43)

where TR,k is the decision variable representing the planned replacement time deter-
mined at the kth CM point, cp is the cost of a preventive replacement, and cf is
the replacement cost with the failure. It is well known that if cp ≥ cf , no preven-
tive replacement is optimal. In this case, TR,k will approach positive infinity, i.e.,
TR,k → +∞. Then the last term in the denominator of Eq. (5.43) will be E(Lk|X1:k).
Therefore, the nonexistence ofE(Lk |X1:k) may lead to the nonexistence of Eq. (5.43).
However, our result can avoid this problem and makes Eq. (5.43) hold in general.

Additionally, it can be proved that the above cost function equals the cost function
used in [31].

Theorem 5.7 Let FLk |X1:k (TR,k − tk
∣∣X1:k) = Pr(Lk < TR,k − tk

∣∣X1:k) and F̄Lk |X1:k
( lk|X1:k) = 1 − FLk |X1:k ( lk|X1:k). Then

C(TR,k) = cp + (cf − cp)FLk |X1:k (TR,k − tk
∣∣X1:k)

tk +
TR,k−tk∫
lk=0

F̄Lk |X1:k ( lk|X1:k)dlk

.
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Proof From Eq. (5.35), we directly have

C(TR,k) = cp + (cf − cp)FLk |X0:k (TR,k − tk
∣∣X0:k)

tk + (TR,k − tk)F̄Lk |X0:k (TR,k − tk
∣∣X0:k) +

TR,k−tk∫
lk=0

lkfLk |X0:k (lk|X0:k)dlk

.

(5.44)
For the third term of the denominator in the above equation, we get

TR,k−tk∫
lk=0

lkfLk |X0:k (lk|X0:k)dlk =
TR,k−tk∫
lk=0

lkdFLk |X0:k (lk|X0:k)

= lkFLk |X0:k (lk|X0:k)
∣∣lk=TR,k−tk
lk=0 −

TR,k−tk∫
lk=0

FLk |X0:k (lk|X0:k)dlk

= (TR,k − tk)FLk |X0:k (TR,k − tk
∣∣X0:k) +

TR,k−tk∫
lk=0

F̄Lk |X0:k (lk|X0:k)dlk − (TR,k − tk)

=
TR,k−tk∫
lk=0

F̄Lk |X0:k (lk|X0:k)dlk − (TR,k − tk)F̄Lk |X0:k (TR,k − tk
∣∣X0:k). (5.45)

Replacing the third term in the denominator of Eq. (5.44) with above equation
will complete the proof.

Based on above results, we have the following conclusion for the cost functions
when using the approximated RUL distribution by Gebraeel’s approach and our exact
RUL distribution. Denote the cost function using the RUL distribution obtained from
Gebraeel’s approach as C′(TR,k).

Theorem 5.8 Conditional on the degradation history to tk, i.e., X1:k, and adopting
the same parameter estimation procedure, if cf ≥ cp, then C(TR,k) ≥ C′(TR,k).

Proof Based on Theorem 5.7, we have the following formulas of C(TR,k) and
C′(TR,k),

C(TR,k) = cp + (cf − cp)FLk |X0:k (TR,k − tk
∣∣X0:k)

tk +
TR,k−tk∫
lk=0

F̄Lk |X0:k ( lk|X0:k)dlk

, (5.46)

and

C′(TR,k) = cp + (cf − cp)FL′
k |X0:k (TR,k − tk

∣∣X0:k)

tk +
TR,k−tk∫
lk=0

F̄L′
k |X0:k ( lk|X0:k)dlk

. (5.47)
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From Theorem 5.6, we have FLk |X1:k (lk|X1:k) ≥ FL′
k |X1:k (lk|X1:k). Then we have

cp + (cf − cp)FLk |X0:k (TR,k − tk
∣∣X0:k) ≥ cp + (cf − cp)FL′

k |X0:k (TR,k − tk
∣∣X0:k),

(5.48)

and

tk +
TR,k−tk∫
lk=0

F̄Lk |X0:k ( lk|X0:k)dlk ≤tk +
TR,k−tk∫
lk=0

F̄L′
k |X0:k ( lk|X0:k)dlk. (5.49)

As a result, the proof is completed.

Theorem 5.8 implies that, when using approximated RUL distribution in decision-
making, the operating risk represented by the expected cost per unit time will be
underestimated and then the maintenance action may be delayed. This further con-
firms the statement implied by Theorem 5.6.

Remark 5.5 Note that variance parameter σ 2 and parameters μ0, σ
2
0 in prior dis-

tribution p(θ) of [28] and the related works are prior determined from the offline
degradation data of multiple other systems. However, once these parameters are
determined and they are then fixed even if real-time CM data are available. This
makes the RUL estimation non-robust over these parameters. Particularly, if these
parameters are not determined accurately enough, then the estimated RUL may be
hardly accurate. In contrast, our approach can adaptively adjust Θ = [σ 2, μ0, σ

2
0 ]

via the EM algorithm in line with real-time data. In this sense, our approach relies
less on prior information.

To facilitate the implementation of the developed approach, the main steps are
summarized in the following algorithm.

Algorithm 5.1 (RUL estimation and associated replacement decision algorithm)
Step 1: At the initial time t0, select σ 2 = σ̂ 2

0 and the initial prior parameters
μ0 = μθ,0, σ

2
0 = σ 2

θ,0.
Step 2: Once obtaining the degradation observation xk at time tk for k ≥ 1, let

σ 2 = σ̂ 2
k−1 and the prior parameters μ0 = μθ,k−1, σ

2
0 = σ 2

θ,k−1. Then Eq. (5.16) is
used to calculate μθ,k, σ

2
θ,k .

Step 3: Based on μθ,k, σ
2
θ,k , the parameters σ 2 = σ̂ 2

k and μ0 = μθ,k, σ
2
0 = σ 2

θ,k
are obtained by Eqs. (5.28) and (5.29), respectively.

Step 4: Based on μθ,k, σ
2
θ,k from Step 2 and σ 2 from Step 3, estimate the RUL by

Eq. (5.35) and make the replacement decision by minimizing Eq. (5.43).
Step 5: Once obtaining new degradation observation xk+1 at time tk+1, go to Step 2

and repeat the above steps.
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5.4 Exponential Model

The exponential-like degradation model is another typical model representing a
degradation process where the cumulative damage has a particular effect on the rate
of degradation, but the degradation path can be linearized by log-transformation. So
far, it has long been thought to be a good approximation for nonlinear degradation
processes such as corrosion, bearing degradation, deterioration of LED lighting, see
[28, 42–44]. In this section, we borrow this kind of model but obtain some novel
results which were not reported before. In general, an exponential degradation model
can be represented as,

X(t) = φ + θ ′ exp

(
β ′t + σB(t) − σ 2

2
t

)
, (5.50)

where φ is a known constant, σ is a constant representing the deterministic parameter,
θ ′ and β ′ are random variables characterizing the unit-to-unit variability, and B(t) is
also a standard BM.

For an exponential-like model, it is more convenient to work with its logged
format. Thus, we define S(t) at t as follows,

S(t) = ln [X(t) − φ] = ln θ ′ +
(

β ′ − σ 2

2

)
t + σB(t) = θ + βt + σB(t), (5.51)

where θ = ln θ ′ and β = β ′ − σ 2/2, and we denote θ = [θ, β].
As well as the case study part in [28, 35, 42], it is assumed that φ = 0 to simplify

the analysis. In general, however, φ could be any known constant. In the following,
we mainly focus on the transformed degradation observations from S(t) and illustrate
the implementation process of our approach for RUL estimation in this exponential
case.

Steps 1–2: Bayesian estimate of random parameters
As the same assumption used for the prior distributions of θ ′ and β ′ in [28], we let

ln θ ′ and β ′ follow N(μ0, σ
2
0 ) and N(μ′

1, σ
2
1 ), respectively, where μ′

1 = μ1 + σ 2/2,
and we further assume that θ ′, β ′ and B(t) are mutually independent. Therefore,
we have θ ∼ N(μ0, σ

2
0 ) and β ∼ N(μ1, σ

2
1 ). As a result, once the new CM data is

available, the posterior estimates of θ and β can be evaluated by the Bayesian rule.
Let S1:k = {s1, s2, . . . , sk}, where sk = ln xk . Then, given θ, β, the sampling dis-

tribution of S1:k is multivariable normal as

p(S1:k| θ, β) = 1∏k
j=1

√
2πσ 2(tj − tj−1)

×

exp

{
− (s1 − θ − βt1)

2

2σ 2t1
−
∑k

j=2

(
sj − sj−1 − β(tj − tj−1)

)2
2σ 2(tj − tj−1)

}
.

(5.52)



124 5 An Exact and Closed-Form Solution to Degradation …

Then the joint posterior estimate of θ and β conditional on S1:k is still normal
resulted from the fact of the normal distribution assumption of θ and β. In other
words, θ, β| S1:k ∼ N(μθ,k, σ

2
θ,k, μβ,k, σ

2
β,k, ρk). To be more precise, we have

p( θ, β|S1:k) ∝p(S1:k
∣∣ θ, β) · p(θ, β)

∝ exp

{
(s1 − θ − βt1)2

2σ 2t1
−
∑k

j=2

(
sj − sj−1 − β(tj − tj−1)

)2
2σ 2(tj − tj−1)

}
×

exp

{
− (θ − μ0)2

2σ 2
0

}
· exp

{
− (β − μ1)2

2σ 2
1

}

∝ 1

2πσθ,kσβ,k

√
1 − ρ2

k

×

exp

{
− 1

2(1 − ρ2
k )

(
(θ − μθ,k)

2

σ 2
θ,k

− 2ρk
(θ − μθ,k)(β − μβ,k)

σθ,kσβ,k
+ (β − μβ,k)

2

σ 2
β,k

)}
,

(5.53)

with

μθ,k = (s1σ
2
0 + μ0σ

2t1)(σ 2 + σ 2
1 tk) − σ 2

0 t1(σ
2
1 sk + μ1σ

2 − 0.5σ 4)

(σ 2
0 + σ 2t1)(σ 2

1 tk + σ 2) − σ 2
0 σ 2

1 t1

σ 2
θ,k = σ 2

0 σ 2t1(σ 2 + σ 2
1 tk)

(σ 2
0 + σ 2t1)(σ 2

1 tk + σ 2) − σ 2
0 σ 2

1 t1

μβ,k = (skσ 2
1 + μ1σ

2 − 0.5σ 4)(σ 2
0 + σ 2t1) − σ 2

1 (σ 2
0 s1 + μ0σ

2t1)

(σ 2
0 + σ 2t1)(σ 2

1 tk + σ 2) − σ 2
0 σ 2

1 t1

σ 2
β,k = σ 2

1 σ 2t1(σ 2
0 + σ 2t1)

(σ 2
0 + σ 2t1)(σ 2

1 tk + σ 2) − σ 2
0 σ 2

1 t1

ρk = −σ0σ1
√
t1√

(σ 2
0 + σ 2t1)(σ 2

1 tk + σ 2)

. (5.54)

As we have discussed that θ, β|S1:k ∼ N(μθ,k, σ
2
θ,k, μβ,k, σ

2
β,k, ρk), according to

the properties of the bivariate normal distribution we then have

θ |S1:k ∼ N(μθ,k, σ
2
θ,k), β| S1:k ∼ N(μβ,k, σ

2
β,k)

β| θ,S1:k ∼ N
(
μβ|θ,k, σ

2
β|θ,k

)
, (5.55)

with
μβ|θ,k = μβ,k + ρkσβ,k(θ − μθ,k)

/
σθ,k

σ 2
β|θ,k = σ 2

β,k(1 − ρ2
k )

. (5.56)

Additionally, the following equations hold

E(θβ| S1:k) = ρkσθ,kσβ,k + μθ,kμβ,k, E(θ |S1:k) = μθ,k, E(β|S1:k) = μβ,k,

E(θ2
∣∣S1:k) = μ2

θ,k + σ 2
θ,k, E(β2

∣∣ S1:k) = μ2
β,k + σ 2

β,k .

(5.57)
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Now let us focus on calculating fLk |θ ,X1:k (lk|θ ,S1:k) at tk . For in service RUL
estimation at tk , given θ and β and the current observation sk = ln xk , we can translate
the original degradation as

S(t) = sk + β(t − tk) + σ (B(t) − B(tk)) , t ≥ tk. (5.58)

Based on Theorem 5.1 and Eq. (5.44), given θ and β, the estimated RUL at tk can
be calculated from the FPT of the following process crossing threshold w,

S′(lk) = sk + βlk + σW (lk), lk ≥ 0, (5.59)

with
W (lk) = B(lk + tk) − B(tk). (5.60)

Theorem 5.1 tells us that {W (lk), lk ≥ 0} is still a standard BM. Therefore,{
S′(lk), lk ≥ 0

}
is still a BM with a drift part βlk and initial value S′(0) = sk . There-

fore, given θ and β, from Theorem 5.2, it is direct to obtain the PDF and CDF of the
RUL at tk as follows,

fLk |θ,β,S1:k (lk|θ, β,S1:k) = w − sk√
2π l3kσ

2
exp

{
− (w − sk − βlk)

2

2σ 2lk

}
, lk > 0, (5.61)

FLk |θ,β,S1:k (lk|θ, β,S1:k) =1 − Φ

(
w − sk − βlk

σ
√
lk

)
+

exp

{
2β(w − sk)

σ 2

}
Φ

(−(w − sk) − βlk
σ
√
lk

)
. (5.62)

In the next step, we illustrate how to estimate unknown parameters Θ = [σ 2, a] =
[σ 2, μ0, μ1, σ

2
0 , σ 2

1 ]. In the following, we use Θk = [σ 2
k , μ0,k, μ1,k, σ

2
0,k, σ

2
1,k] to

denote the parameter needed to be estimated based on S1:k .
Step 3: Estimate deterministic parameters based on EM algorithm

Similar to the linear case, the ith estimate is represented as Θ̂
(i)

k = [σ̂ 2
k

(i)
, μ̂

(i)
0,k,

μ̂
(i)
1,k, σ

2(i)
0,k , σ

2(i)
1,k ]. Then the complete log-likelihood function can be written as

ln p(S1:k, θ, β| Θk) = ln p(S1:k | θ, β,Θk) + ln p( θ, β| Θk)

= − 1

2

∑k

j=1
ln(tj − tj−1) − k + 2

2
ln 2π − k

2
ln σ 2

k − (s1 − θ − βt1)2

2σ 2
k t1

−

∑k

j=2

(
sj − sj−1 − β(tj − tj−1)

)2
2σ 2

k (tj − tj−1)
− 1

2
ln σ 2

0,k − 1

2
ln σ 2

1,k−

(θ − μ0,k)
2

2σ 2
0,k

− (β − μ1,k)
2

2σ 2
1,k

. (5.63)
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Then, from Eq. (5.8), �(Θk| Θ̂ (i)

k ) can be computed as

�(Θk | Θ̂(i)
k )

=E
θ,β|S1:k ,Θ̂

(i)
k

{ln p(S1:k, θ, β| Θk)}

= k + 2

2
ln 2π − 1

2

∑k

j=1
ln(tj − tj−1)− k

2
ln σ 2

k −
s2

1 − 2s1(μθ,k + μβ,k t1) + μ2
θ,k + σ 2

θ,k + 2t1
(
ρkσθ,kσβ,k + μθ,kμβ,k

)+ t21(μ2
β,k + σ 2

β,k)

2σ 2
k t1

−

∑k

j=2

(sj − sj−1)
2 − 2(sj − sj−1)(tj − tj−1)μβ,k + (tj − tj−1)

2(μ2
β,k + σ 2

β,k)

2σ 2
k (tj − tj−1)

−

1

2
ln σ 2

0,k − 1

2
ln σ 2

1,k − μ2
θ,k + σ 2

θ,k − 2μθ,kμ0,k + μ2
0,k

2σ 2
0,k

− μ2
β,k + σ 2

β,k − 2μβ,kμ1,k + μ2
1,k

2σ 2
1,k

.

(5.64)

Let ∂�( Θk |Θ̂ (i)

k )

∂Θk
= 0, we obtain Θ̂

(i+1)

k as follows,

σ̂ 2
k

(i+1)

= 1

k

(
s2

1 − 2s1(μθ,k + μβ,k t1) + σ 2
θ,k + σ 2

β,k + 2t1(ρkσθ,kσβ,k + μθ,kμβ,k) + t21 (σ 2
β,k + μ2

β,k)

t1
+

∑k

j=2

(sj − sj−1)
2 − μβ,k(tj − tj−1)(sj − sj−1) + (tj − tj−1)

2(μ2
β,k + σ 2

β,k)

(tj − tj−1)

)
. (5.65)

μ
(i+1)

0,k = μθ,k, σ
2
0,k

(i+1) = σ 2
θ,k

μ
(i+1)

1,k = μβ,k, σ
2
1,k

(i+1) = σ 2
β,k . (5.66)

Theorem 5.9 Θ̂
(i+1)

k obtained by Eqs. (5.65) and (5.66) is uniquely determined and

located at the maximum of �(Θk| Θ̂ (i)

k ).

Proof : the proof is similar to the proof of Theorem 5.3.
The above theorem guarantees that each iteration of the EM algorithm can be

performed with a single computation, which leads to an extremely fast and simple
estimation procedure.

Step 4: Exact and closed-form solution to degradation path-dependent RUL
estimation

Note that the RUL estimation by Eqs. (5.61) and (5.62) only uses the current
degradation data. In this step, we attempt to make the estimated RUL depend on
the CM history through the updating of parameters, i.e., fLk |S1:k (lk|S1:k). The updated
RUL distribution at tk can be summarized in the following theorem.
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Theorem 5.10 For the exponential model, the PDFandCDFof the RUL conditional
on S1:k can be respectively expressed by

fLk |S1:k (lk |S1:k) = w − sk√
2π l3k

(
σ 2

β,k lk + σ 2
) exp

⎧⎨
⎩−

(
w − sk − μβ,k lk

)2
2lk
(
σ 2

β,k lk + σ 2
)
⎫⎬
⎭ , lk > 0, (5.67)

FLk |S1:k (lk |S1:k) = 1 − Φ

⎛
⎝w − sk − μβ,k lk√

σ 2
β,k l

2
k + σ 2lk

⎞
⎠+

exp

{
2μβ,k(w − sk)

σ 2 + 2σ 2
β,k(w − sk)2

σ 4

}
Φ

⎛
⎝−2σ 2

β,k(w − sk)lk + σ 2
(
μβ,k lk + w − sk

)
σ 2
√

σ 2
β,k l

2
k + σ 2lk

⎞
⎠ .

(5.68)

Proof (1) For fLk |S1:k (lk|S1:k), we have

fLk |S1:k (lk|S1:k) =
∫∫

fLk |θ,β,S1:k (lk|θ, β,S1:k)p(θ, β|S1:k)dθdβ

=
∫

fLk |θ,β,S1:k (lk|θ, β,S1:k)p(β| θ,S1:k)p(θ |S1:k)dθdβ

=
∫

p(θ |S1:k)
(∫

fLk |θ,β,S1:k (lk|θ, β,S1:k)p(β| θ,S1:k)dβ

)
dθ

= E θ |S1:k
[
E β|θ,S1:k

[
fLk |θ,β,S1:k (lk|θ, β,S1:k)

]]
. (5.69)

Therefore, we first have

E β|θ,S1:k
[
fLk |θ,β,S1:k (lk|θ, β,S1:k)

]

= w − sk√
2π l3kσ

2
E β|θ,S1:k

[
exp

{
− (w − sk − βlk)

2

2σ 2lk

}]

= w − sk√
2π l3k (σ

2 + σ 2
β|θ,k lk)

exp

⎧⎨
⎩− (w − sk − μβ|θ,k lk)2

2lk
(
σ 2 + σ 2

β|θ,k lk
)
⎫⎬
⎭

= w − sk√
2π l3k (σ

2 + σ 2
β|θ,k lk)

exp

⎧⎨
⎩− (w − sk − μβ,klk + ϕμθ,klk − ϕθ lk)2

2lk
(
σ 2 + σ 2

β|θ,k lk
)

⎫⎬
⎭ ,

(5.70)

with ϕ = ρkσβ,k
/
σθ,k .
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From Eq. (5.69), we have

E θ |S1:k
[
E β|θ,S1:k

[
fLk |θ,β,S1:k (lk|θ, β,S1:k)

]]

= w − sk√
2π l3k (σ

2 + σ 2
β|θ,k l

)

k

E θ |S1:k

⎡
⎣exp

⎧⎨
⎩− (w − sk − μβ,klk + ϕμθ,klk − ϕθ lk)2

2lk
(
σ 2 + σ 2

β|θ,k lk
)

⎫⎬
⎭
⎤
⎦

= w − sk√
2π l3k (σ

2 + σ 2
β|θ,k l

)

k

E θ |S1:k

⎡
⎣exp

⎧⎨
⎩− (

w−sk−μβ,k lk+ϕμθ,k lk
ϕlk

− θ)2

2lk
(
σ 2 + σ 2

β|θ,k lk
)

/(ϕlk)2

⎫⎬
⎭
⎤
⎦

= AE θ |S1:k

[
exp

{
− (B − θ)2

2C

}]
, (5.71)

with

A = w − sk√
2π l3k (σ

2 + σ 2
β|θ,k l

)

k

,B = w − sk − μβ,klk + ϕμθ,klk
ϕlk

,

C = lk
(
σ 2 + σ 2

β|θ,k lk
)
/(ϕlk)

2, ϕ = ρk
σβ,k

σθ,k
. (5.72)

Then using the second result in Theorem 5.4 and simplifying the expression can
complete the proof of the first equation in Theorem 5.10.

(2) For FLk |S1:k (lk|S1:k), we have,

FLk |S1:k (lk|S1:k) =
∫∫

FLk |θ,β,S1:k (lk|θ, β,S1:k)p(θ, β|S1:k)dθdβ

= E θ,β|S1:k
[
FLk |θ,β,S1:k (lk|θ, β,S1:k)

]
= E θ |S1:k

[
E β|θ,S1:k

[
FLk |θ,β,S1:k (lk|θ, β,S1:k)

]]
. (5.73)

Therefore, we first calculate E β|θ,S1:k
[
FLk |θ,β,S1:k (lk|θ, β,S1:k)

]
as

E β|θ,S1:k
[
FLk |θ,β,S1:k (lk|θ, β,S1:k)

]

=1 − E β|θ,S1:k

[
Φ

(
w − sk − βlk

σ
√
lk

)]
+

E β|θ,S1:k

[
exp

{
2β(w − sk)

σ 2

}
Φ

(−(w − sk) − βlk
σ
√
lk

)]

=1 − Φ

⎛
⎝w − sk − μβ|θ,k lk√

σ 2
β|θ,k l

2
k + σ 2lk

⎞
⎠+ exp

{
2μβ|θ,k (w − sk)

σ 2
+

2σ 2
β|θ,k (w − sk)2

σ 4

}
Φ

⎛
⎝−2σ 2

β|θ,k (w − sk)lk + σ 2(μβ|θ,k lk + w − sk)

σ 2
√

σ 2
β|θ,k l

2
k + σ 2lk

⎞
⎠
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=1 − Φ

⎛
⎝w − sk − μβ,klk + ϕμθ,klk − ϕθ lk√

σ 2
β|θ,k l

2
k + σ 2lk

⎞
⎠+

exp

{
2(μβ,k − ϕμθ,k + ϕθ)(w − sk)

σ 2
+ 2σ 2

β|θ,k (w − sk)2

σ 4

}
×

Φ

⎛
⎝−2σ 2

β|θ,k (w − sk)lk + σ 2(μβ,klk − ϕμθ,klk + ϕθ lk + w − sk)

σ 2
√

σ 2
β|θ,k l

2
k + σ 2lk

⎞
⎠

=1 − Φ (a + bθ) + E exp{A′θ}Φ(C′ + D′θ), (5.74)

where a, b,E,A′,C′,D′ are defined as follows

a = w − sk − μβ,k lk + ϕμθ,k lk√
σ 2

β|θ,k l
2
k + σ 2lk

, b = −ϕlk√
σ 2

β|θ,k l
2
k + σ 2lk

,

E = exp

{
2(μβ,k − ϕμθ,k)(w − sk)

σ 2 + 2σ 2
β|θ,k (w − sk)2

σ 4

}
,D′ = − σ 2ϕlk

σ 2
√

σ 2
β|θ,k l

2
k + σ 2lk

A′ = 2ϕ(w − sk)

σ 2 ,C′ = −2σ 2
β|θ,k (w − sk)lk + σ 2(μβ,k lk − ϕμθ,k lk + w − sk)

σ 2
√

σ 2
β|θ,k l

2
k + σ 2lk

.

Then, using Theorem 5.4, it is straightforward to show,

FLk |S1:k (lk|S1:k) =E θ |S1:k
[
E β|θ,S1:k

[
FLk |θ,β,S1:k (lk|θ, β,S1:k)

]]
=E θ |S1:k

[
1 − Φ (a + bθ) + E exp{Aθ}Φ(C + Dθ)

]

=1 − Φ

⎛
⎝ a + bμθ,k√

1 + b2σ 2
θ,k

⎞
⎠+ E · exp

{
Aμθ,k + A2

2
σ 2

θ,k

}
×

Φ

⎛
⎝C + Dμθ,k + ADσ 2

θ,k√
1 + D2σ 2

θ,k

⎞
⎠ . (5.75)

Simplifying above expression completes the proof of the second equation in The-
orem 5.10.

It can be found that the form of the estimated RUL distribution in this exponential
case is much similar to the case of the linear model. This is largely due to the fact that
exponential model can be easily linearized by log-transformation. Therefore, based
on the transformed data S1:k , it is not strange to see that both cases have a similar
style of the RUL distribution.

If we denote the estimated RUL by [28] as L′
k , then the following conclusion holds

in general.
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Theorem 5.11 Conditional on the degradation history to tk, i.e., S1:k, and using the
same parameter estimation procedure, we have L′

k ≥st Lk.

Proof As [28], following the procedure Pr(L′
k ≤ lk

∣∣S1:k) = Pr (S(lk + tk) ≥ w|
S1:k), we have

S(lk + tk)|S1:k ∼ N(sk + μθ,klk, σ
2
θ,kl

2
k + σ 2lk), (5.76)

As a result, the CDF of the estimated RUL can be written as

FL′
k |S1:k (lk|S1:k) = 1 − Φ

⎛
⎝w − sk − μβ,klk√

σ 2
β,kl

2
k + σ 2lk

⎞
⎠ . (5.77)

Compared with Eq. (5.54), we have,

FL′
k |S1:k (lk|S1:k) ≤ FLk |S1:k (lk|S1:k), (5.78)

Namely,
Pr(L′

k ≥ lk|S1:k) ≥ Pr(Lk ≥ lk|S1:k). (5.79)

Then according to the given definition by Eq. (5.33), the proof is completed.

Resulted from a similar style of the RUL distribution to the linear case, other
remarks and conclusions in Sect. 5.3 are also applied to this exponential case. In
addition, the RUL estimation and associated replacement decision algorithm for the
exponential case is also similar to the linear case.

5.5 Experimental Studies

In this section, we provide several numerical simulations to compare the performance
of the presented approach with some known works in the literature for the same case.
Then a practical case study for the condition-based replacement of gyros in the inertial
navigation system (INS) is illustrated to demonstrate the application of our approach.
For an illustrative purpose, we only consider the case of the linear degradation model.
From our previous theoretical derivations, we can observe that the implementation
of the exponential case is much similar to the linear case.
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5.5.1 Numerical Example

In this experiment, we first show that the parameters of the degradation model and the
PDFs of RULs obtained from our approach adapt to the data as they accumulate. Some
comparisons with the approximated results by [28] are performed subsequently.

In order to illustrate and validate our developed approach in estimating the RUL,
we use a nonlinear process X(t) = λtb + σBB(t) to generate the simulated degrada-
tion data. This is to show that our linear model has an adaptive nature so it can also
be used for modeling nonlinear degradation. By Euler approximation, we can simu-
late the degradation data as X ((k + 1)Δt) = X (kΔt) + λb (kΔt)b−1 Δt + σBY

√
Δt

where Y ∼ N(0, 1) and Δt is the discretization step. In the simulation, we let λ =
0.05, b = 2,Δt = 0.1, σB = 0.05. One particular simulated sample path is shown in
Fig. 5.1 with 136 sampling points, terminated at X (13.6) = 10.1759. Given thresh-
old w = 10.176, and the FHT for this path is approximately to be 13.7.

In following experiments, we assume that the parameters in prior distribution
p(θ) are μ0 = 7, σ 2

0 = 0.05, and the variance parameter σ 2 = 0.5 for the linear
model represented by Eq. (5.12). Then according to our developed approach for the
linear case, the estimated degradation and the updated parameters are illustrated with
sequential sampling as Figs. 5.2 and 5.3, respectively.

Figure 5.2 shows that our model has a quick and good predictive ability and the
degradation paths of both actual and predicted almost overlap, where the predicted
path is the estimated expectation of the degradation path, i.e., E (X (t) − X (0)) =
μθ,kt. The updates of the parameters μ0, σ

2
0 , σ 2 are illustrated by Fig. 5.3. In compar-

ison, Gebraeel’s method cannot trace the degradation path as well as our approach,
since once μ0, σ

2
0 , σ 2 are selected, they are fixed. Regarding the parameter updat-
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Fig. 5.1 The simulated degradation path
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ing, it is interesting to note that, however, the early predictions of both methods are
not accurate enough. Namely, the confidence in the true value of μθ,k is not high at
the early stage of the updating. This is resulted from the inappropriate selection of
the initial parameters, particularly μ0, which is selected as a relatively large value
μ0 = 7 to verify the adaptive ability of our updating approach. Notwithstanding, it
can be observed that the predictive ability of our method is improved as the data
are accumulated. Another observation is that μ0,k is not approaching μθ,k = xk

/
tk
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exactly in the used sampling data (e.g., μ0,k = 1.8201 but μθ,k = 0.7538 at the last
sampling point), since at the last sampling point, tk = 13.5 which is not large enough
to make μ0,k approach μθ,k according to Remark 5.1. Therefore, inappropriate selec-
tion of the initial parameters will require more data to make the parameter estimation
approach μθ,k .

To be more precise, the mean squared errors (MSEs) of our approach and
Gebraeel’s approach for degradation predictions are calculated over time for fur-
ther comparisons, where the MSE at time tk is defined as MSEk =∑k

i=1[xk −
E(X(tk))]2

/
k =∑k

i=1 [xk − μθ,ktk]2
/
k. Figure 5.4 shows the results of the MSEk

over time, which also reflect the superiority of our approach.
In addition, at the final sampling point with the actual value 10.1759, the MSEs

of our approach and Gebraeel’s approach are 0.2683 and 0.3895 with the predicted
degradation values 10.0945 and 10.4828, respectively. At this particular point, the
absolute error of our approach and Gebraeel’s approach are 0.0814 and 0.3069,
respectively. This further verifies that the updating mechanism adopted in this chapter
can effectively improve the predictive ability of the degradation modeling.

Figure 5.5 compares the estimated RUL distributions from our approach with
Gebraeel’s approach at the last six sampling points, in which the prior parameters
μ0, σ

2
0 , σ 2 selected at random are not updated. In this case, the difference between

our results and Gebraeel’s results is significant. It is shown that if the prior para-
meters in Gebraeel’s approach are selected inappropriately, the estimated RUL may
be incorrect (the observed RULs are outside of the predicted RUL PDF ranges).
However our approach can produce reasonable estimates, and the estimated RUL
distributions cover the actual remaining time well. This further demonstrates the
merit of our approach. In fact, other cases of inappropriate selection of μ0, σ

2
0 , σ 2
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Fig. 5.5 The estimated PDFs of the RUL by our approach and Gebraeel’s approach (©–end of
life)

can also be tested and the results are similar to above conclusion. This shows the
robustness of our approach over the selection of these prior parameters.

Due to the sensitivity of Gebraeel’s approach to the prior parameters, we adopt our
developed algorithm to update μ0, σ

2
0 , σ 2 in Gebraeel’s approach in the following

to achieve a fair comparison. Accordingly, the estimated RUL distributions of our
approach and Gebraeel’s approach are shown in the right-hand side of Fig. 5.5. It can
be found that using our updating approach of parameters can improve Gebraeel’s
results, in contrast with the results shown in the left-hand side of Fig. 5.5. However,
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there are some differences among their RUL distributions and our obtained results
can reduce the uncertainty of the estimated RUL distributions since the PDF is higher
than Gebraeel’s results. This is largely due to the approximated nature of the RUL
distribution of Gebraeel’s approach. In order to shed a light to the effect of RUL
approximation on condition-based replacement decision, we minimize Eq. (5.43)
to determine the replacement time. Let cp = 4000, cf = 9000, then the expected
cost per unit time at the 135th sampling time (t135 = 13.5) based both approaches
is illustrated by the left-hand side of Fig. 5.6. It is noted that in this case the fail-
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Fig. 5.6 Illustration of the condition-based replacement decision at t135 = 13.5
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ure replacement cost is much larger than the preventive replacement cost so that
an immediate replacement is recommended from both approaches. However, if we
change the preventive replacement cost as cp = 8900, then the according expected
cost per unit time is illustrated by the right-hand side of Fig. 5.6.

Two observations can be drawn from the results illustrated by Fig. 5.6. First, the
expected cost per unit time using the RUL distribution of our exact approach is
always larger than that of Gebraeel’s approximated approach. This result is ensured
by Theorem 5.8. Second, Gebraeel’s approximated approach will lead to the delay
of condition-based replacement time. Specifically, at t135 = 13.5, the optimal time
until replacement of Gebraeel’s approximated approach is 1.9 withC′(13.5 + 1.9) =
690.5252. The according result of our exact approach is 1.5 with C(13.5 + 1.5) =
693.4734. These two observations are also applied to other sampling points.

The above example shows the advantages of the presented approach and the
effects of approximated RUL distributions on decision-making, compared with our
exact result. In order to demonstrate the potential of the proposed approaches in
engineering practice, a practical case study is provided in the next subsection using
the real-world CM data of gyros in INS.

5.5.2 A Practical Case Study of the Developed Approach
in Condition-Based Replacement

As a vital device in the INS, the inertial platform plays an important role in the
INS. Its condition monitoring parameters have a direct influence on navigation pre-
cision. In engineering practice, health condition of an inertial platform is evaluated
by its precision testing. Furthermore, the precision of the inertial platform depends
on the drift coefficients of the gyro. As such, for simplicity, the drift coefficients
are selected as the characteristic parameters for weighing the health condition of
an inertial platform. In this study, we assume that CM values of drift coefficients
reflect the performance of the inertial platform, and the larger the drift coefficients
monitored are, the worse the performance is. Therefore, according to the CM data
and technical index of the inertial platform, failure prediction can be implemented by
modeling the drift coefficients. The drift coefficients of an inertial platform mainly
include K0X ,K0Y ,K0Z ,KSX ,KSY ,KIZ , in which K0X ,K0Y ,K0Z denote constant drift,
and KSX ,KSY ,KIZ are stochastic drift, where KSX ,KSY denote the coefficients related
to the first moment of specific force along the sense axis, and KIZ denotes the coef-
ficient related to the first moment of specific force along the input axis. 109 points
of drift coefficients data with CM intervals 2.5 h were collected in test conditions.
The collected data are illustrated in Fig. 5.7. In practice, the rotating part of inertial
platform with a high speed can lead to rotation axis wear. With the accumulation
of wear, the drift coefficients increase and system performance suffers degradation
and finally failure occurs. Generally, the drift degradation measurement along the
sense axis, KSX , plays a dominant role in the assessment of gyro degradation. In our
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Fig. 5.7 Drift coefficients of the INS

study, we take the CM data of KSX as the degradation signals and use them for RUL
estimation of the tested INSs.

In practice of the INS health monitoring of this type, it is usually required that the
drift measurement along the sense axis should not exceed 1.2(◦/h). This threshold
is determined at the design stage and is strictly enforced in practice since an INS
is a critical device used in weapon systems. As for this specific application case,
using the proposed method, the predictions of the gyro’s drift and the distribution of
the RUL can be obtained at each CM point. As mentioned previously, we adopt our
developed algorithm to update μ0, σ

2
0 , σ 2 in Gebraeel’s approach as our approach to

achieve a fair comparison. The predicted drifting path is shown in Fig. 5.8. Figure 5.9
illustrates the estimated RUL distributions at some CM points with our exact approach
and Gebraeel’s approximated approach.

It can also be observed from Fig. 5.8 that our approach can quickly adjust and
update the possibly inappropriate prior parameter in p(θ) and thus the predicted path
matches the actual path well after some updates. For the updated RUL distribution,
the difference between the results of our exact approach and Gebraeel’s approximated
approach is significant in this case, as shown in Fig. 5.9. In contrast, our obtained
results can reduce the uncertainty of the RUL estimation obviously.

To give some insights to the influence of these differences on replacement
decision-making, in this case study, we first set cf = 10000 RMB and cp =
4000 RMB and use Eq. (5.43) to obtain the optimal replacement time. Figure 5.10
illustrates the expected costs per unit time against the associated time until replace-
ment at the last CM point by applying our exact RUL distribution and Gebraeel’s
result.

Obviously seen from the left-hand side of Fig. 5.10, the expected cost per unit
time using the RUL distribution of our exact approach is always larger than that of
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Fig. 5.9 Illustration of the RUL distributions at the last six CM points (©–actual RUL)

Gebraeel’s approximated approach, ensured by Theorem 5.8. Therefore, Gebraeel’s
approach underestimates the expected cost and so the operating risk of the INS.
Similar to the simulation, Gebraeel’s approximated approach will lead to the delay
of the recommended replacement time. Specifically, at the last CM point, i.e.,
t109 = 272.5 (h), the optimal time until replacement using Gebraeel’s approximated
approach is 1 h with C′(272.5 + 1) = 14.6390 (RMB/h). The according result of our
exact approach is 0.8 h with C(272.5 + 0.8) = 14.6436 (RMB/h). However, when
we fix the replacement cost with failure cf , but increase the preventive replacement
cost to cp = 9500 RMB, the associated expected costs per unit time of our exact RUL
distribution and Gebraeel’s result are illustrated by the right-hand side of Fig. 5.10.
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Fig. 5.10 Illustration of the condition-based replacement decision at t110 = 272.5 (h)

It is interesting to note that in this case the curve of expected cost per unit time of
Gebraeel’s result has two locally minimum points. This is against the nature of the
cost function of Eq. (5.43) since it should only have one minimum point. The result
is due to the effect of the approximation in the Gebraeel’s approach. However, our
approach has only one minimum point. This shows that the approximated result can
lead to a wrong recommendation if the minimum at 200 h is chosen since the cost at
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Fig. 5.11 Conditional reliability at t110 = 272.5 (h)

it is lower than that of the other minimum, but it is obviously wrong since it can be
seen from Fig. 5.9 that the remaining life of the gyro is much less than 200 h.

On the other hand, many reliability-centered maintenance policies have been
investigated in the literature and applied in practice. Therefore, it is useful to have
an intuition of the reliability associated with the approximated result and exact
result. Here, we use F̄Lk |X1:k (lk|X1:k) as the conditional reliability obtained from
our exact approach, while F̄L′

k |X1:k (lk|X1:k) as the conditional reliability obtained
from Gebraeel’s approach. The difference is illustrated at the last CM point in
Fig. 5.11. It can be found that the difference is significant and the maximum dif-
ference between F̄Lk |X1:k (lk|X1:k) and F̄L′

k |X1:k (lk|X1:k) is 0.265. This is due in part to
the many fluctuations existing in the degradation path of the drift. As a result, using
Pr(L′

k ≤ lk
∣∣X1:k) = Pr (X(lk + tk) ≥ w|X1:k) to approximate the RUL will lead to

overestimating of the reliability, as discussed in Remark 5.3 and Theorem 5.6. Conse-
quently, when the approximated result is applied to reliability-centered maintenance,
the obtained decision may be far from the reality.

Overall, these simulations and the case study imply that the approximated result
has significant effects on RUL estimation and further on the replacement decision-
making. In extreme case, a unique and optimal replacement decision cannot be
achieved and a much delayed repair action may be incurred when it is applied to
decision-making and optimization. In contrast, our exact approach can effectively
overcome the disadvantages of the approximated result and lead to a timely replace-
ment, which is important, particularly when the monitored system is vital or expen-
sive, such as the case in most military or medical applications.
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Chapter 6
Estimating RUL with Three-Source
Variability in Degradation Modeling

6.1 Introduction

Prognostics and health management (PHM) can make full use of condition monitor-
ing (CM) data from a functioning system to assess the reliability of the system in its
actual life-cycle conditions, to determine the advent of failure, and tomitigate system
risk through managerial activities [1–4]. A requirement of a PHM-enabled system
is the ability to estimate the remaining useful life (RUL), which can provide the
decision-maker with enough lead time to perform the necessary maintenance actions
prior to failure. This RUL estimation is a fundamental prerequisite for proactive
maintenance because utilizing information about the system’s RUL in maintenance
decisions can improve the system’s availability, extend the system’s life, and fur-
ther reduce life-cycle costs. So far, the estimated RUL, conditional on the CM data,
has been considered as one of the most central components in PHM and has been
attached great importance in practice. Therefore, the purpose of this chapter is to
investigate how to estimate the RUL from the CM data, and emphasis is placed on
handling various sources of variability in stochastic degradation modeling.

6.1.1 Motivation

With advances in information and sensing technologies, degradation signals of the
system can be obtained relatively easily through CM techniques, and the past decade
has witnessed an increasingly growing research interest on various aspects of PHM
of systems based on measured degradation signals (see [5–9], and the references
therein). However, it is quite common in practice that the degradation occurs in a
stochastic way for a number of engineering systems such as bearings, gyros, and
battery systems. As a result, the RUL is also a random variable, resulting in the
difficulty to estimate the RUL with certainty; see [8] for an overview of this topic.
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To characterize the uncertainty of the RUL, attention is usually paid to the estima-
tion of the probability distribution of the RUL by modeling the degradation process.
Generally, the degradation processes of technological systems are usually affected by
numerous sources of variability contributing to the uncertainty of the estimated RUL:
(1) temporal variability, (2) unit-to-unit variability, (3) measurement variability, and
(4) model error; see [6, 10–16] for some examples. Recent advances in manag-
ing uncertainties associated with prognostics can be found in [17–19]. Particularly,
Baraldi et al. in [17] investigated the capabilities of different prognostic approaches
to deal with various sources of uncertainty in RUL estimation, and formulated the
effect of model error (e.g., resulted from model assumptions and simplifications
made on the form and structure of the degradation model) on RUL estimation. In
this chapter, we mainly focus on the first three sources of variability.

First, temporal variability is referred to as the inherent uncertainty associated with
the progression of the degradation over time [12, 20–22]. Due to the stochastic nature
of a degradation process, it is appropriate to model such degradation by a stochastic
process. Second, the unit-to-unit variability determines heterogeneity among the
degradation paths of different units. Taking gyros in an inertial navigation system
for example, as a gyro degrades, the drift tends to increase. When the drift reaches
a threshold (which is typically determined by an associated industrial standard),
the gyro is considered to have failed. In this case, the degradation rate of gyros
differs from each other. Such difference in degradation rates can usually be modeled
by introducing unit-specific random effects through some model parameters [11, 23,
24]. Last, perfectmeasurements for degradation are practically impossible to achieve,
and the measured data are inevitably contaminated by measurement error resulting
from disturbance, non-ideal measurement instruments, and other noise [6, 13, 16,
25–27]. In this case, the observed degradation signals can only partially reflect the
underlying degradation state.

From the above introduction, it has been recognized that temporal variability, unit-
to-unit variability, and measurement variability are three important factors having to
be taken into account simultaneously when investigating the RUL estimation in the
framework of stochastic modeling. Most published works on RUL estimation using
stochastic models focused on models that only considered one source or two sources
of variability [10, 13, 23, 28–37]. In contrast, the research on RUL estimation using
degradation models with three-source variability is very limited.

On the other hand, even for the few models that considered three-source variabil-
ity, the research is limited to the case of modeling the degradation process only or
estimating the lifetime for a population of statistically identical systems, ignoring
the impact of imperfect measurements on the lifetime distribution [13, 14, 16, 29].
In addition, updating the estimated RUL for a particular system in service using real-
time data is increasingly important and desirable so that the most recently calculated
RUL value can accurately reflect the current reality of the system. This updating
mechanism has been considered by others (see for example [23, 32, 35, 38]), but
not in the context with three-source variability in degradation modeling. Therefore,
an important, practical problem of how to achieve real-time RUL estimation with
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three-source variability remains unsolved. This gap leads to the primary motivation
of this chapter.

Throughout this chapter, the term three-source variability means considering tem-
poral variability, unit-to-unit variability, andmeasurement variability simultaneously.

6.1.2 Related Works

There is a great need to develop stochastic models to model the degradation process
for RUL estimation, and a significant volume of research has been published, such
as random coefficient regression models [28, 31, 39], Gamma processes [12, 30,
37], inverse Gaussian processes [40–42], and Wiener processes [10, 13, 29, 30, 32,
34–36, 43]. A recent review on these models can be found in [8].

In these research works, degradation processes described by Wiener processes
are particularly attractive because they not only have some favorable mathematical
properties but also canmodel non-monotonic degradation signals frequently encoun-
tered in practice. Therefore, this type of stochastic process has been widely used to
characterize the path of the degradation process where successive fluctuations in
degradation are observed, such as in the examples in [10, 23, 32–34, 43]. It is noted
however that the above works considered mostly the temporal variability or unit-to-
unit variability, or both. For example, in [35], the authors considered aWiener process
for RUL estimation using a deterministic drift parameter, and adaptively updated
this parameter by a state-space model and Kalman filtering technique. However, in
the estimated RUL distribution, only the point estimation of the drift parameter is
considered, and the issue regarding the presence of the unit-to-unit variability and
measurement variability is missing. Recently, an extension in [32] considered the
effect of the estimation uncertainty of the drift parameter on the estimated RUL, but
omitted the measurement variability as well.

There are reported works considering measurement variability using state-space
models in [35–38, 44]. However, the other two sources of variability were not consid-
ered simultaneously together in theseworks. For example, in [38], a state-space based
prognostic model was proposed to characterize the nonlinearity and measurement
variability by applying the extended Kalman filter. However, only the approximate
probability density function (PDF) of the RUL is obtained, and the cumulative distri-
bution function (CDF), mean, and variance of the estimated RUL cannot be derived
analytically because of the involved nonlinearity. In addition, all the model para-
meters in the work of [38] are deterministic. Therefore, the method in [38] ignores
the unit-to-unit variability. There are some exceptions such as the works by [13,
14, 16, 29], where three-source variability was taken into account at the same time.
However, all these works only consider the measurement variability in parameter
estimation, and ignore the effect of the uncertainty in the estimated degradation
state on the RUL distribution due to measurement errors. They also did not consider
the updating mechanism for the RUL in line with the newly measured degradation
signals unique to an individual system in service. In addition, when three-source
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variability is involved in the stochastic degradation model, it is inevitable to consider
the identifiability problem of the parameters in the degradation model. However, all
the existing works do not address this problem.

6.1.3 Main Works of This Chapter

In this chapter, we present aWiener process-based degradation modeling framework
for RUL estimation with three-source variability. The main novelty of the presented
model lies in the concerned problem of how to enable us to consider three-source
variability simultaneously to estimate and update the RUL distribution using the
degradation data across the population, and the real-time observed measurements of
an individual system in service. This novelty in considering three-source variability
distinguishes our model from the existing results such as [10, 13, 14, 16, 23, 29, 32,
33, 35, 36, 38] in several major aspects.

1. Three sources of variability are simultaneously considered; and by constructing a
state-space model, the correlated posterior distributions of the underlying degra-
dation state and random effect parameter are estimated by employing the Kalman
filtering technique. This approach differs from the cases that the parameters of
the degradation model are deterministic.

2. On the basis of the posterior distributions of the underlying degradation state,
and the random effect parameter, the analytical forms of the PDF, CDF, mean,
and variance of the estimated RUL are derived. It is found that three kinds of
variability can propagate into the estimated results; thus, we account for the effect
of three-source variability on the estimated RUL simultaneously.

3. The results with three-source variability can be updated with the newly measured
degradation data unique to the system in service, and the RUL estimation results
only considering one- or two-source variability are obviously special cases of our
results.

4. The identifiability of the parameters in the presented model is investigated. Then,
a MLE method is given to specify the initial parameters of the state-space model
based on the historical degradation observations of multiple units. Thus the link-
age between the past and real-time data is established.

Finally, we provide a practical case study for gyros in an inertial navigation plat-
form to illustrate the application of the developed approach. With realistic data, we
compare the estimated RUL results considering three-source variability with the
results only considering one- or two-source variability based on several measures:
Akaike information criterion (AIC), mean squared error (MSE), and relative error
(RE). The results verify that considering three-source variability can improve the
model fit, and the accuracy of the RUL estimation.
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Section6.2 gives the description of the degradation modeling framework with
three-source variability. In Sect. 6.3, we estimate the RUL under three sources of
variability. Section6.4 investigates the issues regarding the identifiability and para-
meter estimation of the presented model. Section6.5 provides a case study for
demonstration.

6.2 Description of Degradation Modeling
with Three-Source Variability for RUL Estimation

Let {X (t), t ≥ 0}denote the stochastic process describing the underlying degradation
progression over operating time t , which is modeled by aWiener process. In general,
a Wiener process based degradation model can be represented as

X (t) = X (0) + θ t + σ B(t), (6.1)

where σ B(t) ∼ N (0, σ 2t) for t > 0, representing the stochastic dynamics of the
degradation process, and X (0) = x0 is a known initial degradation state. Without
loss of generality, we assume X (0) = x0 = 0 in the following.

Equation (6.1) can characterize the temporal variability due to the dynamics of
{B(t), t ≥ 0}. However, each system possibly experiences different operating condi-
tions, and thus the degradation paths of different systems exhibit different degradation
rates to increase. Therefore, for a degradation model to be realistic, it is more appro-
priate to incorporate unit-to-unit variability in the degradation process. As such, we
treat the parameter θ to be a random effect representing between-unit variation, and
σ to be a fixed parameter representing the degradation feature common to all systems
in the population. For simplicity, we assume that θ follows θ ∼ N (μθ , σ

2
θ ), and is

statistically independent of {B(t), t ≥ 0}. The ideas of random effects and Gaussian
assumptions are widely used in degradation modeling literature [8, 11].

Additionally, perfect measurement of the underlying degradation state is often
impossible or costly. Instead, the obtained measurements are inevitably subject to
measurement variability, resulting from noise, disturbance, non-ideal instruments,
etc. In this case, the observedmeasurements are imperfect, and canpartially reflect the
underlying degradation state. To characterize the effect of the measurement variabil-
ity, themeasurement process {Y (t), t ≥ 0}, which describes the relationship between
the observable but uncertain measurements and the underlying degradation state at
time t , is formulated as

Y (t) = X (t) + ε, (6.2)

where ε is the random measurement error, assumed to be statistically independent
and identically distributed (i.i.d.) with ε ∼ N (0, γ 2) at any time point t . It is fur-
ther assumed that ε, θ , and B(t) are mutually statistically independent. All these
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assumptions are widely adopted in the practice of degradation modeling and RUL
estimation.

Before addressing the RUL estimation issues based on the above model setting,
we have the following remark regarding the linkage of the above model, which we
refer to as our model, with the existing results.

Remark 6.1 The choice of the parameters σ 2, γ 2, σ 2
θ is made to obtain a model that

includes, as special cases, othermodels that have already found practical applications
in the literature. In fact, it is easy to verify the following points.

1. When σ 2 = 0, our model with three-source variability reduces to the linear
random effect regression model in [11, 24, 31], where only the measurement
uncertainty and unit-to-unit variability are considered.

2. when γ 2 = 0, ourmodelwith three-source variability reduces to the linearWiener
process model with random drift in [5, 7, 10, 32, 33], where only the temporal
uncertainty and unit-to-unit variability are considered.

3. When σ 2
θ = 0, our model with three-source variability reduces to the linear but

hidden degradation model in [36, 44], where only the temporal uncertainty and
measurement uncertainty are considered.

4. When γ 2 = 0, σ 2
θ = 0, our model with three-source variability reduces to the

traditional linear Wiener process model in [15, 34, 35], where only the temporal
uncertainty is considered. �

Remark 6.2 From the above work, see that the underlying assumptions of the pro-
posed model include: (1) the system operates in time-invariant environments, and
thus the rate of degradation can be approximated as a constant for simplicity, i.e., the
degradation process is linear or can be treated as locally linear; and (2) the measure-
ment noise is Gaussian. These assumptions have been widely used in degradation
modeling. �

As a result of Remarks6.1 and 6.2, our model can include many existing models
as special cases, and thus is more general and flexible. As in other degradation
modeling works [8, 45], we adopt the concept of the first hitting time (FHT) to
define the lifetime, and then proceed to deducing the RUL. In other words, once
the degradation process {X (t), t ≥ 0} is equal to or beyond a predefined threshold
level, the system will be considered to be failed, and therefore, the lifetime can be
interpreted as the FHT of the degradation process to the threshold level. According
to the concept of FHT, the lifetime T of a system is defined as

T = inf {t : X (t) ≥ ω| X (0) < ω} , (6.3)

where ω is the predefined threshold level.
The above formulation is mainly focused on a population of the system. The main

objective here is to estimate and update the RUL distribution of an individual system
in service based on the real-time observations of the degradation process. Suppose the
degradation process is discretely monitored at time 0 = t0 < t1 < · · · < tk , and let
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yk = Y (tk) denote the degradation observation at time tk . The set of the degradation
measurements up to tk is represented by Y 1:k = {y1, y2, . . . , yk}, and the correspond-
ing set of the degradation states up to tk is represented by X1:k = {x1, x2, . . . , xk},
where xk = X (tk). As a result, we further express discrete measurement at time
tk as yk = xk + εk , where the measurement errors εk are assumed to be i.i.d.
realizations of ε.

Therefore, using the concept of the FHT, we define the RUL Lk of a system at
time tk as

Lk = inf {lk > 0 : X (lk + tk) ≥ ω} . (6.4)

with conditional PDF f Lk |Y 1:k ( lk |Y 1:k), and conditional CDF

FLk |Y 1:k ( lk |Y 1:k) = Pr(Lk ≤ lk |Y 1:k) = Pr

(
sup
lk>0

X (tk + lk) ≥ ω

∣∣∣∣∣Y 1:k

)
, (6.5)

where Y 1:k is the observed measurements available up to tk .
In the remaining sections, our primary goal is to derive f Lk |Y 1:k ( lk |Y 1:k) and

FLk |Y 1:k ( lk |Y 1:k) based on Y 1:k with three-source variability.

6.3 RUL Estimation with Three-Source Variability

To investigate RUL estimation with three-source variability, we consider three cases
in this section: (1) temporal variability andunit-to-unit variability together, (2) tempo-
ral variability and measurement variability together, and (3) three-source variability
simultaneously.

6.3.1 RUL Estimation with Temporal Variability
and Unit-to-Unit Variability

Initially, we only consider the temporal variability in the degradation process
{X (t), t ≥ 0} by making θ be deterministic. It is well-known that the FHT of the
Wiener process crossing a fixed threshold follows an inverse Gaussian distribution
[46]. In the following, we summarize the main results and properties of the lifetime
T in this case only considering the temporal variability.

Lemma 6.1 For the Wiener process as in (6.1) and (6.3), given θ , the following
equations hold.
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f T |θ ( t | θ) = ω√
2π t3σ 2

exp

(
− (ω − θ t)2

2σ 2t

)
, (6.6)

FT |θ ( t | θ) = 1 − Φ

(
ω − θ t

σ
√
t

)
+ exp

(
2θω

σ 2

)
Φ

(−ω − θ t

σ
√
t

)
, (6.7)

E(T | θ) = ω

θ
, (6.8)

var(T | θ) = ωσ 2

θ3
, (6.9)

Φ(·) is the CDF of standard normal distribution.

When we consider the random effect of θ representing unit-to-unit variability,
the PDF and CDF of the lifetime can be respectively computed by the law of total
probability as

fT (t) =
∫ +∞

−∞
f T |θ ( t | θ)p(θ)dθ = Eθ

[
f T |θ ( t | θ)

]
, (6.10)

and

FT (t) =
∫ +∞

−∞
FT |θ ( t | θ)p(θ)dθ = Eθ

[
FT |θ ( t | θ)

]
, (6.11)

where p(θ) is the PDF of θ , and Eθ [·] is the expectation operator with respect to θ .
To facilitate the derivation and explicitly calculate the integrals such as those in

(6.10) and (6.11), we first give the following lemmas, which can be proved directly
through some lengthy algebraic manipulations; thus the proofs are omitted here, and
the interested readers can refer to [47].

Lemma 6.2 If Z ∼ N (μ, σ 2), and w1,w2, A, B ∈ R,C ∈ R+, then

EZ

[
(w1 − AZ) exp

(
− (w2 − BZ)2

2C

)]
=
√

C

B2σ2 + C

(
w1 − A

Bw2σ
2 + μC

B2σ2 + C

)
· exp

(
− (w2 − Bμ)2

2(B2σ2 + C)

)
.

(6.12)

Lemma 6.3 If Z ∼ N (μ, σ 2), and w, A, B,C, D ∈ R, 1 − 2Bσ 2 > 0, then

EZ
[
exp(AZ + BZ2)Φ(C + DZ)

]= 1√
1 − 2Bσ 2

exp

(
2Aμ + A2σ 2 + 2Bμ2

2(1 − 2Bσ 2)

)

×Φ

(
C + Dμ+ADσ 2 − 2BCσ 2√

(1 − 2Bσ 2)2 + D2σ 2(1 − 2Bσ 2)

)
.

(6.13)

Based on Lemmas6.1–6.3, we can calculate (6.10) and (6.11) explicitly. Themain
results are summarized in the following theorem:
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Theorem 6.1 For the Wiener process in (6.1) and (6.3), taking into account the
random effect of θ with θ ∼ N (μθ , σ

2
θ ), the following results hold.

fT (t) = ω√
2π t3(σ 2

θ t + σ 2)
exp

(
− (ω − μθ t)

2

2t (σ 2
θ t + σ 2)

)
, (6.14)

FT (t) = 1 − Φ

⎛
⎝ ω − μθ t√

σ 2
θ t

2 + σ 2t

⎞
⎠+ exp

(
2μθω

σ 2 + 2σ 2
θ ω2

σ 4

)
Φ

⎛
⎝− 2σ 2

θ ωt + σ 2(ω + μθ t)

σ 2
√

σ 2
θ t

2 + σ 2t

⎞
⎠ ,

(6.15)

E(T ) =
√
2ω

σθ
D

⎛
⎝ μθ√

2σ 2
θ

⎞
⎠ , (6.16)

var(T ) = E(T )

2σ 2
θ

[
σ 2μ2

θ

σ 2
θ

+ 2ωμθ − σ 2 − 2σ 2
θ E(T )

]
− ω

2σ 2
θ

(
σ 2μθ

σ 2
θ

+ 2ω), (6.17)

where D(z) = exp(−z2)
∫ z
0 exp(u2)du is the Dawson integral for real z.

Proof The proofs for the PDF and CDF can be derived following the method in
[13]. In the following, we derive the formulations of the mean and variance of the
lifetimes. For facilitating the subsequent derivations of the variance of the lifetime
or the RUL, we first give the following facts. Assume a random variable following
θ ∼ N (μθ , σ

2
θ ). Then the following facts hold.

Eθ

[
1

θ

]
= 1

σ 2
θ

exp

(
− μ2

θ

2σ 2
θ

)∫ μθ

0
exp

(
u2

2σ 2
θ

)
du =

√
2

σθ

D

(
μθ√
2σθ

)
, (6.18)

Eθ

[
1

θ2

]
= μθ

σ 2
θ

Eθ

[
1

θ

]
− 1

σ 2
θ

, Eθ

[
1

θ3

]
= 1

2σ 2
θ

[
μθ Eθ

[
1

θ2

]
− Eθ

[
1

θ

]]
, (6.19)

where D(z) = exp(−z2)
∫ z
0 exp(u2)du is the Dawson integral for real z.

Based on the property of the expectation operator, and (73) and (74), we can
compute E(T ), and var(T ) as

E(T ) = Eθ [E(T | θ)] = Eθ

[ω
θ

]
=

√
2ω

σθ

D

(
μθ√
2σθ

)
, (6.20)

and

var(T ) = Eθ [var(T | θ)] + varθ [E(T | θ)] = Eθ

[
ωσ 2

θ3

]
+ varθ

[ω

θ

]

= ωσ 2Eθ

[
1

θ3

]
+ Eθ

[
ω2

θ2

]
−
(
Eθ

[ω

θ

])2

= ωσ 2Eθ

[
1

θ3

]
+ ω2Eθ

[
1

θ2

]
− E2(T )

= E(T )

2σ 2
θ

[
σ 2μ2

θ

σ 2
θ

+ 2ωμθ − σ 2 − 2σ 2
θ E(T )

]
− ω

2σ 2
θ

(
σ 2μθ

σ 2
θ

+ 2ω

)
(6.21)
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This completes the proof of Theorem6.1.

The above formulations in (6.14) and (6.15) are consistent with the results in
[13], which are mainly focused on a population of the systems. Namely, in (14), the
estimated PDF of the FHT does not consider the real-time degradation state of the
monitored system.

If the degradation state X (tk) = xk at current time tk can be observed directly,
and there is xk < ω, we assume that the system has been functioning before tk .
In this chapter, we use this assumption to update the knowledge of the degradation
process. Note that this assumption is often adopted in the literature including in
[7, 23, 32, 33]. This approach differs from that of [38], where the made assumption
is used to approximate the PDF of the lifetime T . Thus, the time t in the assumption
of [38] corresponds to a future time because the current time there is t0 = 0. As a
result, using the assumption in [38] to estimate the RUL Lk at time tk , the time in the
assumption is transformed to tk + lk , which is still a future time. However, for our
used assumption, if xk < ω at current time tk , the system has been functioning before
tk . Unlike [38], our treatment does not impose additional constraints and ignore the
probability of the event occurring for calculating the PDF of the RUL.

As a result, for t ≥ tk , given θ and xk (xk < ω), we revise the degradation process
over time since tk according to the Markov property of the Wiener process as

X (t) = xk + θ(t − tk) + σ (B(t) − B(tk)) , t ≥ tk . (6.22)

In such a case, the residual t − tk corresponds to the realization of the RUL at
time tk if t is the FHT of {X (t), t ≥ tk}, according to the definition of the RUL in
(6.4). Therefore, we first take the transformation lk = t − tk for (16), where lk > 0.
Then the process {X (t), t ≥ tk} can be represented with the residual time lk as

X (lk + tk) = xk + θlk + σ (B(lk + tk) − B(tk)) , lk > 0. (6.23)

As a result, the RUL at time tk is equal to the FHT of the process
{
X̃(lk), lk ≥ 0

}
crossing threshold ωk = ω− xk , where X̃(li ) = X (lk + tk)− xk , and X̃(0) = 0. That
is to say, given tk ,

X̃(lk) = θlk + σW (lk),W (lk) = B(lk + tk) − B(tk). (6.24)

To derive f Lk |xk ( lk | xk), it is necessary to prove that the stochastic process
{W (lk), lk ≥ 0}, with W (lk) = B(lk + tk) − B(tk), is still a BM. This result is
guaranteed by the following lemma [33].

Lemma 6.4 Given tk , the stochastic process {W (t), t ≥ 0}with W (t) = B(t+ tk)−
B(tk) for any t ≥ 0 is still a standard BM, where {B(t), t ≥ 0} is a standard BM.
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Therefore, the estimated PDF of the RUL, f Lk |θ,xk ( lk | θ, xk), conditional on the
current degradation state xk(xk < ω) and θ , can be obtainedby the following theorem.

Theorem 6.2 For theWiener process defined in (6.1), and the definition of theRUL in
(6.4), given θ and the current degradation state xk(xk < ω), the following equations
for RUL estimation at time tk hold.

f Lk |θ,xk ( lk | θ, xk) = ω − xk√
2πl3kσ

2
exp

(
− (ω − xk − θlk)2

2σ 2lk

)
, (6.25)

FLk |θ,xk ( lk | θ, xk) = 1 − Φ

(
ω − xk − θlk

σ
√
lk

)
+ exp

(
2θ(ω − xk)

σ 2

)
Φ

(−ω + xk − θlk
σ
√
lk

)
,

(6.26)

E( Lk | θ, xk) = ω − xk
θ

, (6.27)

var( Lk | θ, xk) = (ω − xk)σ 2

θ3
. (6.28)

In general, as the age of the system grows, the system’s degradation gradually
increases. Therefore, prognostics is more commonly applied to aged systems (corre-
sponding to large xk) rather than new systems (corresponding to small xk). Actually,
this interest can be reflected by the above obtained results. Take (21) and (22) for
example. If xk → ω, then the estimated PDF of the RUL f Lk |θ,xk ( lk | θ, xk) → 0,
and the CDF FLk |θ,xk ( lk | θ, xk) → 1. This result reflects the aging character with xk
increasing.

When the random effect of θ is considered, according to Theorems6.1 and 6.2,
we have the following results for f Lk |xk ( lk | xk), and FLk |xk ( lk | xk).
Theorem 6.3 For the Wiener process in (6.1), and the definition of the RUL in (6.4),
given the current degradation state xk and θ ∼ N (μθ , σ

2
θ ), the following equations

for RUL estimation at time tk hold.

f Lk |xk ( lk | xk) = ω − xk√
2πl3k (σ

2
θ lk + σ 2)

exp

(
− (ω − xk − μθ lk)2

2lk(σ 2
θ lk + σ 2)

)
, (6.29)

FLk |xk ( lk | xk ) = 1 − Φ

⎛
⎝ ωk − μθ lk√

σ 2
θ l

2
k + σ 2lk

⎞
⎠+ exp

(
2μθωk

σ 2 + 2σ 2
θ ω2

k

σ 4

)
Φ

⎛
⎝− 2σ 2

θ ωklk + σ 2(ωk + μθ lk)

σ 2
√

σ 2
θ l

2
k + σ 2lk

⎞
⎠ ,

(6.30)

E(Lk |xk ) =
√
2(ω − xk )

σθ

D

(
μθ√
2σ 2

θ

)
, (6.31)

var(Lk |xk ) = E(Lk |xk )
2σ 2

θ

[
σ 2μ2

θ

σ 2
θ

+ 2ωkμθ − σ 2 − 2σ 2
θ E(Lk |xk )

]
− ωk

2σ 2
θ

(
σ 2μθ

σ 2
θ

+ 2ωk

)
(6.32)

where ωk = ω − xk, and D(z) = exp(−z2)
∫ z
0 exp(u2)du is the Dawson integral for

real z.
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The above results are based on the condition that the current degradation state xk
can be observed directly and exactly. However, due to the measurement variability,
the true degradation state xk at time tk is unobservable, and its accurate value is
impossible to be known as discussed previously. In this case, it is better to let the
true degradation process be a latent process, which is continuously fluctuating but
not directly observable. Thus the degradation state is needed to be estimated from
the measurements. This approach is the focus in the next part.

6.3.2 RUL Estimation with Temporal Variability
and Uncertain Measurements

Here, given θ , we derive the RUL estimation results taking into account the temporal
variability and measurement variability. In this case, only uncertain measurements
Y 1:k up to the current time tk are available, and the degradation state xk cannot be
directly used, so we have to estimate the distribution of xk at time tk to account for
the effect of the measurement variability on the RUL estimation.

To identify the degradation state, the state and measurement equations should be
converted into the discrete time equations to facilitate the state estimation once the
new observations are available at the CM point. Then, we can obtain the transformed
dynamic system equations at the discrete time point tk, k = 1, 2, . . .

{
xk = xk−1 + θ(tk − tk−1) + vk

yk = xk + εk
, (6.33)

where vk = σ
[
B(tk) − B(tk−1)

]
, and εk is the realization of ε at tk . {vk}k≥1 and

{εk}k≥1 are i.i.d. noise sequences. According to the model setting in Sect. 6.2, we
further have vk ∼ N

(
0, σ 2(tk − tk−1)

)
, and εk ∼ N (0, γ 2).

According to the established model (6.33), we utilize a Kalman filter to estimate
the underlying degradation state. First, we define x̂ k|k = E( xk |Y 1:k, θ), and Pk|k =
var( xk |Y 1:k, θ) as the expectation, and variance of xk that are conditional on the
measurement history Y 1:k , respectively. We also define x̂ k|k−1 = E( xk |Y 1:k−1, θ),
and Pk|k−1 = var( xk |Y 1:k−1, θ) as the one-step-ahead predicted expectation, and
variance, respectively. Therefore, at time tk , the Kalman filter for state estimation
can be summarized as follows.

State estimation,

x̂ k|k−1 = x̂ k−1|k−1 + θ(tk − tk−1)

x̂ k|k = x̂ k|k−1 + K (k)(yk − x̂ k|k−1)

K (k) = Pk|k−1(Pk|k−1 + γ 2)−1

Pk|k−1 = Pk−1|k−1 + σ 2(tk − tk−1)
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Variance update,

Pk|k = (1 − K (k)) Pk|k−1,

The initial values of the degradation state are specified as x̂ 0|0 = 0 and P0|0 = 0
because of the model setting x0 = 0 in Sect. 6.2.

Applying the above Kalman filtering algorithm, the posterior of xk conditional on
the measurement sequence Y 1:k up to tk is Gaussian and analytically tractable, i.e.,
xk | θ,Y 1:k ∼ N (x̂ k|k, Pk|k). In this case, due to measurement variability, the degra-
dation state is estimated from the measurements, and thus estimation uncertainty is
involved. To account for estimation uncertainty, the RUL estimation in this case is
derived by

f Lk |θ,Y 1:k ( lk | θ,Y 1:k) =
∫ +∞

−∞
f Lk |θ,xk ,Y 1:k ( lk | θ, xk,Y 1:k)p( xk | θ,Y 1:k)dxk

= E xk |θ,Y 1:k
[
f Lk |θ,xk ,Y 1:k ( lk | θ, xk,Y 1:k)

]
, (6.34)

and

FLk |θ,Y 1:k ( lk | θ,Y 1:k) =
∫ +∞

−∞
FLk |θ,xk ,Y 1:k ( lk | θ, xk,Y 1:k)p( xk | θ,Y 1:k)dxk

= E xk |θ,Y 1:k
[
FLk |θ,xk ,Y 1:k ( lk | θ, xk,Y 1:k)

]
, (6.35)

where p( xk | θ,Y 1:k) is the conditional PDF of xk | θ,Y 1:k , with mean x̂ k|k , and vari-
ance Pk|k .

In addition, we present the following lemma to help evaluate the integrals in (6.34)
and (6.35).

Lemma 6.5 Given the current degradation state xk , θ , and Y 1:k at time tk , we have

f Lk |θ,xk ,Y 1:k ( lk | θ, xk,Y 1:k) = f Lk |θ,xk ( lk | θ, xk), (6.36)

FLk |θ,xk ,Y 1:k ( lk | θ, xk,Y 1:k) = FLk |θ,xk ( lk | θ, xk). (6.37)

Proof According to the definition in (6.5), utilizing the Markov property of the
Wiener process, we have

FLk |θ,xk ,Y1:k ( lk | θ, xk ,Y1:k ) = Pr(Lk ≤ lk |θ, xk ,Y1:k ) = Pr( sup
lk>0

X (tk + lk ) ≥ ω|θ, xk ,Y1:k )

= Pr( sup
lk>0

X (tk + lk ) ≥ ω|θ, xk ) = FLk |θ,xk ( lk | θ, xk ). (6.38)

This completes the proof.
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Based on Lemmas6.2, 6.3, and 6.5, we have the following results for RUL esti-
mation in the case of taking temporal variability and measurement variability into
account.

Theorem 6.4 For the Wiener process (6.1) and the definition of the RUL in (6.4),
given θ , and uncertain measurements Y 1:k up to current time tk , the following results
for RUL estimation at time tk hold.

f Lk |θ,Y1:k ( lk | θ,Y1:k) = (ω − x̂ k|k)σ 2 + Pk|kθ√
2π(Pk|k + σ 2lk)3

exp

(
− (ω − x̂ k|k − θlk)2

2
(
Pk|k + σ 2lk

)
)

, (6.39)

FLk |θ,Y1:k ( lk | θ,Y1:k) = 1 − Φ

(
ω − x̂ k|k − θlk√

Pk|k + σ 2lk

)
+ exp

(
2θ(ω − x̂ k|k)

σ 2 + 2θ2Pk|k
σ 4

)

× Φ

(−ω + x̂ k|k − θlk − 2θ Pk|k
σ 2√

Pk|k + σ 2lk

)
, (6.40)

E( Lk | θ,Y1:k) = ω − x̂ k|k
θ

, (6.41)

var( Lk | θ,Y1:k) = (ω − x̂ k|k)σ 2 + θ Pk|k
θ3

. (6.42)

Proof From (30) and (31), we have

f Lk |θ,Y 1:k ( lk | θ,Y 1:k) = E xk |θ,Y 1:k
[
f Lk |θ,xk ,Y 1:k ( lk | θ, xk,Y 1:k)

]
, (6.43)

and

FLk |θ,Y 1:k ( lk | θ,Y 1:k) = E xk |θ,Y 1:k
[
FLk |θ,xk ,Y 1:k ( lk | θ, xk,Y 1:k)

]
, (6.44)

where p( xk | θ,Y 1:k) is the conditional PDF of xk | θ,Y 1:k .
Due to the linear nature of the state-space model and Kalman filter, it is known

that xk | θ,Y 1:k ∼ N (x̂ k|k, Pk|k). Furthermore, due to Lemma6.5 and Theorem6.2,
we have

f Lk |θ,Y 1:k ( lk | θ,Y 1:k) = E xk |θ,Y 1:k

⎡
⎣ ω − xk√

2πl3kσ
2
exp

(
− (ω − xk − θlk)2

2σ 2lk

)⎤⎦ .

(6.45)

Using Lemma6.2 by settingw1 = ω/

√
2πl3kσ

2,w2 = ω−θlk , A = 1/
√
2πl3kσ

2,

B = 1,C = σ 2lk , and taking the expectation with respect to xk , we have

f Lk |θ,Y 1:k ( lk | θ,Y 1:k) = (ω − x̂ k|k)σ 2 + Pk|kθ√
2π(Pk|k + σ 2lk)3

exp

(
− (ω − x̂ k|k − θlk)2

2
(
Pk|k + σ 2lk

)
)

.

(6.46)
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Similarly, for FLk |θ,Y 1:k ( lk | θ,Y 1:k), we have

FLk |θ,Y1:k ( lk | θ,Y1:k ) = 1 − E xk |θ,Y1:k

[
Φ

(
ω − xk − θlk

σ
√
lk

)]

+ exp

(
2θω

σ 2

)
E xk |θ,Y1:k

[
exp

(
− 2θxk

σ 2

)
Φ

(−ω + xk − θlk
σ
√
lk

)]
.

(6.47)

In (81), for the first expectation term, using Lemma6.3 by setting A = 0, B = 0,
C = (ω − θlk)/(σ

√
lk), D = −1/(σ

√
lk), and then taking the expectation with

respect to xk , we have

E xk |θ,Y 1:k

[
Φ

(
ω − xk − θlk

σ
√
lk

)]
= Φ

(
ω − x̂ k|k − θlk√

Pk|k + σ 2lk

)
. (6.48)

For the second expectation term in (81), using Lemma6.3 by setting A =
−2θ/σ 2, B = 0,C = −(ω + θlk)/(σ

√
lk), D = 1/(σ

√
lk), and then taking the

expectation with respect to θ , we have

E xk |θ,Y 1:k

[
exp

(
−2θxk

σ 2

)
Φ

(−ω + xk − θlk
σ
√
lk

)]

= exp

(
− 2θ x̂ k|k

σ 2
+ 2θ2Pk|k

σ 4

)
Φ

(−ω + x̂ k|k − θlk − 2θ Pk|k
σ 2√

Pk|k + σ 2lk

)
. (6.49)

As a result, we conclude

FLk |θ,Y1:k ( lk | θ,Y1:k) =1 − Φ

(
ω − x̂ k|k − θlk√

Pk|k + σ 2lk

)

+ exp

(
2θ(ω − x̂ k|k)

σ 2 + 2θ2Pk|k
σ 4

)
Φ

(−ω + x̂ k|k − θlk − 2θ Pk|k
σ 2√

Pk|k + σ 2lk

)
.

(6.50)

As for the mean RUL E( Lk | θ,Y 1:k) and variance var( Lk | θ,Y 1:k), based on the
property of the expectation operator and Theorem6.2, we obtain

E( Lk | θ,Y 1:k) = E xk |θ,Y 1:k [E( Lk | θ, xk,Y 1:k)] = E xk |θ,Y 1:k [E( Lk | θ, xk)]

= E xk |θ,Y 1:k

[
ω − xk

θ

]
= ω − x̂ k|k

θ
, (6.51)

and
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var( Lk | θ,Y 1:k) = E xk |θ,Y 1:k [var( Lk | θ, xk,Y 1:k)] + var xk |θ,Y 1:k [E( Lk | θ, xk,Y 1:k)]
= E xk |θ,Y 1:k [var( Lk | θ, xk)] + var xk |θ,Y 1:k [E( Lk | θ, xk)]

= E xk |θ,Y 1:k

[
(ω − xk)σ 2

θ3

]
+ var xk |θ,Y 1:k

[
ω − xk

θ

]

= (ω − x̂ k|k)σ 2

θ3
+ Pk|k

θ2
= (ω − x̂ k|k)σ 2 + θ Pk|k

θ3
. (6.52)

This completes the proof.

In the above case, the estimated RUL by Theorem6.4 accounts for the temporal
variability, and the estimation uncertainty due to the measurement variability. Unlike
the existingwork in the similar framework as [38],which only derives an approximate
PDF of the estimated RUL, we give the analytical PDF, CDF, mean, and variance of
the estimated RUL in (35) through (38). These analytical results will facilitate their
computations and applications in practice.

However, the parameter θ is assumed to be given, and the random effect from θ

is not considered in this subsection. In addition, the parameter θ is not updated by
the newly obtained measurements Y 1:k . In the next part, we will investigate how to
incorporate the random effect and the updating mechanism for θ into the estimated
RUL distribution.

6.3.3 RUL Estimation with Three-Source Variability

To incorporate three-source variability in the degradation process jointly, we consider
an updating procedure for the parameter θ by θk = θk−1 over time, where θ0 = θ ∼
N (μθ , σ

2
θ ) is the initial distribution. The posterior distribution of θ is obtained by

utilizing the measurements up to tk . To do so, based on (6.33), the degradation
equation taking three-source variability into account can be reconstructed within a
state-space modeling framework as

⎧⎨
⎩
xk = xk−1 + θk−1(tk − tk−1) + vk

θk = θk−1

yk = xk + εk

. (6.53)

where {vk}k≥1, and {εk}k≥1 are i.i.d. noise sequences following vk ∼ N(
0, σ 2(tk − tk−1)

)
, and εk ∼ N (0, γ 2), respectively.

As such, the underlying degradation state and random parameter θ are considered
to be hidden states, and can only be estimated from the uncertain measurements to
date, Y 1:k . On the basis of the established state-space model (6.53), the Kalman filter
is used to estimate the underlying degradation state and random parameter. To apply
a Kalman filter in this case, we further reorganize the state-space model (6.53) as
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{
zk=Ak zk−1+ηk

yk = Czk + εk
, (6.54)

where zk ∈ R2×1, ηk ∈ R2×1, Ak ∈ R2×2,C ∈ R1×2, and ηk ∼ N (0, Qk) with

zk =
[
xk
θk

]
, ηk =

[
vk
0

]
, Ak =

[
1 tk − tk−1

0 1

]
,C =

[
1
0

]T
, Qk =

[
σ 2(tk − tk−1) 0

0 0

]
,

respectively.
Similarly, we here define the expectation and variance of zk that are conditional

on the measurement history available until the current point as

ẑ k|k =
[
x̂ k|k
θ̂ k|k

]
= E( zk |Y 1:k), (6.55)

P k|k =
[

κ2
x,k κ2

xθ,k
κ2
xθ,k κ2

θ,k

]
= cov( zk |Y 1:k), (6.56)

where x̂ k|k = E( xk |Y 1:k), θ̂ k|k = E(θk |Y 1:k), κ2
x,k = var( xk |Y 1:k), κ2

θ,k =
var(θk |Y 1:k), κ2

xθ,k = cov( xkθk |Y 1:k).
Accordingly, the one-step-ahead predicted expectation and variance are defined

respectively as

ẑ k|k−1 =
[
x̂ k|k−1

θ̂ k|k−1

]
= E( zk |Y 1:k−1), (6.57)

P k|k−1 =
[

κ2
x,k|k−1 κ2

xθ,k|k−1
κ2
xθ,k|k−1 κ2

θ,k|k−1

]
= cov( zk |Y 1:k−1). (6.58)

Based on the above settings and definitions, the Kalman filtering algorithm can
be used to jointly estimate the underlying degradation state and random parameter,
i.e., zk . The estimating process is summarized as follows.

State estimation:

ẑ k|k−1 = Ak ẑ k−1|k−1,

ẑ k|k = ẑ k|k−1 + K (k)(yk − C ẑ k|k−1),

K (k) = P k|k−1CT [CPk|k−1CT + γ 2]−1,

P k|k−1 = Ak Pk−1|k−1AT
k + Qk,

Variance update:
P k|k = P k|k−1 − K (k)CP k|k−1,

where the initial values of the states in the filtering are specified as
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ẑ 0|0 =
[
0
μθ

]
, and P 0|0 =

[
0 0
0 σ 2

θ

]
.

Based on (6.54), and the Gaussian nature of the Kalman filter, the PDF of zk con-
ditional on Y 1:k is bivariate Gaussian with zk ∼ N ( ẑ k|k, P k|k). Namely, the posterior
distributions of the underlying degradation state xk and random effect parameter θ

are correlated at time tk , which contrast with the cases for the deterministic parame-
ters in [35, 38]. According to the properties of the bivariate normal distribution, we
have

θk |Y 1:k ∼ N (θ̂ k|k, κ2
θ,k), (6.59)

xk |Y 1:k ∼ N (x̂ k|k, κ2
x,k), (6.60)

xk | θk,Y 1:k ∼ N
(
μ xk |θ,k, σ

2
xk |θ,k

)
, (6.61)

with

μ xk |θ,k = x̂ k|k + ρk
κx,k

κθ,k
(θk − θ̂ k|k) (6.62)

σ 2
xk |θ,k = κ2

x,k(1 − ρ2
k ). (6.63)

where ρk = κ2
xθ,k/κx,kκθ,k .

Now let us focus on calculating f Lk |Y 1:k ( lk |Y 1:k) at tk once the three-source vari-
ability is taken into account. By the law of total probability, we have

f Lk |Y1:k ( lk |Y1:k) =
∫ +∞

−∞
f Lk |zk ,Y1:k ( lk | zk ,Y1:k)p( zk |Y1:k)dzk

=
∫ +∞

−∞
[p( θk |Y1:k)

∫ +∞

−∞
f Lk |θk ,xk ,Y1:k ( lk | θk , xk ,Y1:k)p( xk | θk ,Y1:k)dxk ]dθk

= E θk |Y1:k
[
E xk |θk ,Y1:k [ f Lk |θk ,xk ,Y1:k ( lk | θk , xk ,Y1:k)]

]
(6.64)

Similar manipulations also hold for FLk |Y 1:k ( lk |Y 1:k), and thus we directly have

FLk |Y 1:k ( lk |Y 1:k) =
∫ +∞

−∞
FLk |zk ,Y 1:k ( lk | zk,Y 1:k)p( zk |Y 1:k)dzk

= E θk |Y 1:k
[
E xk |θk ,Y 1:k [FLk |θk ,xk ,Y 1:k ( lk | θk, xk,Y 1:k)]

]
. (6.65)

Based on Lemmas6.1–6.3, and Theorem6.4, we have the following results for
the RUL estimation based on the degradation model with three-source variability.

Theorem 6.5 For the Wiener process as (6.1), and the measurement process (6.4),
given the uncertain measurements Y 1:k up to current time tk , the following results
for RUL Lk at time tk hold.
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Table 6.1 Quantities in Theorem6.5

w1,k = (ω − x̂ k|k + ρk
κx,k
κθ,k

θ̂ k|k)σ 2,w2,k = w1,k

σ 2 Ak = ρk
κx,k
κθ,k

σ 2 − σ 2
xk |θ,k , A2,k = 2w2,k

σ 2

Bk = ρk
κx,k
κθ,k

+ lk , B1,k = ρk
κx,k
κθ,k

− lk , B2,k =
−2 Ak

σ 4

Ck = σ 2
xk |θ,k + σ 2lk ,C2,k = − w2,k√

Ck

Dk =
√
2

κθ,k
D(

θ̂ k|k√
2κ2θ,k

), D2,k =

1√
Ck

(B1,k − 2
σ 2
xk |θ,k

σ 2 )

Hk = ρk
κx,k
κθ,k

(x̂ k|k − ρk
κx,k
κθ,k

θ̂ k|k) − ωρk
κx,k
κθ,k

Jk = w1,k θ̂
2
k|k

κ4θ,k
− w1,k

2κ2θ,k
− ρk

κx,k

κ3θ,k
σ 2 Qk = ρk

κx,k

κ3θ,k
σ 2 − w1,k θ̂ k|k

2κ4θ,k
+ ρ2

k
κ2x,k

κ2θ,k
− Gk

κ2θ,k

Gk = ω2 − 2ω(x̂ k|k − ρk
κx,k
κθ,k

θ̂ k|k) + σ 2
xk |θ,k +

(x̂ k|k − ρk
κx,k
κθ,k

θ̂ k|k)2
σ 2
xk |θ,k = κ2

x,k(1 − ρ2
k )

f Lk
∣∣Y1:k ( lk

∣∣Y1:k ) =
w1,k (B

2
k κ2

θ,k + Ck ) − Ak Bkw2,kκ
2
θ,k − AkCk θ̂ k|k

Ck

√
2π(B2k κ2

θ,k + Ck )
3

exp

⎛
⎝− (ω − x̂ k|k − θ̂ k|k lk )2

2
(
B2k κ2

θ,k + Ck

)
⎞
⎠ ,

(6.66)

F Lk
∣∣Y1:k ( lk

∣∣Y1:k ) = 1 − Φ

(
ω − x̂ k|k − θ̂ k|k lk√

B2k κ2
θ,k + Ck

)
+ 1√

1 − 2B2,kκ
2
θ,k

exp

( 2A2,k θ̂ k|k + A22,kκ
2
θ,k + 2B2,k θ̂

2
k|k

2(1 − 2B2,kκ
2
θ,k )

)

× Φ

(C2,k + D2,k θ̂ k|k + A2,k D2,kκ
2
θ,k − 2B2,kC2,kκ

2
θ,k√

(1 − 2B2,kκ
2
θ,k )

2 + D2
2,kκ

2
θ,k (1 − 2B2,kκ

2
θ,k )

)
, (6.67)

E( Lk
∣∣Y1:k ) = w2,k Dk − ρk

κx,k

κθ,k
, (6.68)

var( Lk
∣∣Y1:k ) = Qk + (Jk + 2Hk + Gk

κ2
θ,k

θ̂ k|k ) · Dk − [E( Lk
∣∣Y1:k )]2, (6.69)

where w1,k , w2,k , Ak, A2,k , Bk, B2,k , Ck, C2,k , Dk, D2,k , Hk, Jk , Qk, and Gk are
specified in Table6.1.

Proof To derive the result for f Lk |Y 1:k ( lk |Y 1:k), we first have the following result
according to Theorem6.2, and Lemma6.5.

f Lk |θk ,xk ,Y1:k ( lk | θk , xk ,Y1:k) = f Lk |θk ,xk ( lk | θk , xk) = ω − xk√
2πl3kσ

2
exp

(
− (ω − xk − θklk)2

2σ 2lk

)
.

(6.70)

Furthermore, because xk | θk,Y 1:k ∼ N
(
μ xk |θ,k, σ

2
xk |θ,k

)
, we get the following

from Theorem6.4.

E xk |θk ,Y1:k [ f Lk |θk ,xk ,Y1:k ( lk | θk , xk ,Y1:k )] = (ω − μ xk |θ,k )σ
2 + σ 2

xk |θ,kθk√
2π(σ 2

xk |θ,k + σ 2lk )3
exp

⎛
⎝− (ω − μ xk |θ,k − θk lk )2

2
(
σ 2
xk |θ,k + σ 2lk

)
⎞
⎠ ,

(6.71)
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whereμ xk |θ,k , and σ 2
xk |θ,k are specified in (48) and (49); andμ xk |θ,k is a function of θk .

From (48) through (50), and θk |Y 1:k ∼ N (θ̂ k|k, κ2
θ,k), we know

f Lk
∣∣Y1:k ( lk

∣∣Y1:k ) = E θk
∣∣Y1:k

[
E xk

∣∣θk ,Y1:k [ f Lk
∣∣θk ,xk ,Y1:k ( lk

∣∣ θk , xk ,Y1:k )]
]

= E θk
∣∣Y1:k

⎡
⎢⎢⎣

(ω − μ xk
∣∣θ,k )σ

2 + σ2
xk
∣∣θ,k

θk√
2π(σ2

xk
∣∣θ,k

+ σ2lk )3
exp

⎛
⎜⎜⎝−

(ω − μ xk
∣∣θ,k − θk lk )

2

2

(
σ2
xk
∣∣θ,k

+ σ2lk

)
⎞
⎟⎟⎠
⎤
⎥⎥⎦

=E θk
∣∣Y1:k

⎡
⎢⎢⎣

(ω − x̂ k|k − ρk
κx,k
κθ,k

(θk − θ̂ k|k ))σ2 + σ2
xk
∣∣θ,k

θk√
2π(σ2

xk
∣∣θ,k

+ σ2lk )3
exp

⎛
⎜⎜⎝−

(ω − x̂ k|k − ρk
κx,k
κθ,k

(θk − θ̂ k|k )− θk lk )
2

2

(
σ2
xk
∣∣θ,k

+ σ2lk

)
⎞
⎟⎟⎠

⎤
⎥⎥⎦

= 1√
2π(σ2

xk
∣∣θ,k

+ σ2lk )3

× E θk
∣∣Y1:k

⎡
⎢⎢⎣
[
(ω − x̂ k|k − ρk

κx,k

κθ,k
(θk − θ̂ k|k ))σ2 + σ2

xk
∣∣θ,k

θk

]
exp

⎛
⎜⎜⎝−

(ω − x̂ k|k−ρk
κx,k
κθ,k

(θk−θ̂ k|k ) − θk lk )
2

2

(
σ2
xk
∣∣θ,k

+ σ2lk

)
⎞
⎟⎟⎠
⎤
⎥⎥⎦

= 1√
2π(σ2

xk
∣∣θ,k

+ σ2lk )3
E θk

∣∣Y1:k
[
(w1,k − Akθk ) exp

(
− (w2,k − Bkθk )

2

2Ck

)]

=
w1,k (B

2
k κ2

θ,k + Ck ) − Ak Bkw2,kκ
2
θ,k − AkCk θ̂ k|k

Ck

√
2π(B2k κ2

θ,k + Ck )
3

exp

⎛
⎝− (ω − x̂ k|k − θ̂ k|k lk )2

2
(
B2k κ2

θ,k + Ck

)
⎞
⎠ (6.72)

where the last equality is implied by Lemma6.2, and w1,k,w2,k, Ak, Bk,Ck are spec-
ified as follows.

w1,k = (ω − x̂ k|k + ρk
κx,k

κθ,k
θ̂ k|k)σ 2,w2,k = w1,k

σ 2
, Ak = ρk

κx,k

κθ,k
σ 2 − σ 2

xk |θ,k,

Bk = ρk
κx,k

κθ,k
+ lk, Ck = σ 2

xk |θ,k + σ 2lk .

This completes the proof part for f Lk |Y 1:k ( lk |Y 1:k).
Similarly, for FLk |Y 1:k ( lk |Y 1:k) with xk | θk,Y 1:k ∼ N

(
μ xk |θ,k, σ

2
xk |θ,k

)
, the fol-

lowing result is obtained according to Theorem6.4.

E xk |θk ,Y1:k [FLk |θk ,xk ,Y1:k ( lk | θk , xk ,Y1:k)] = 1 − Φ

(
ω − μ xk |θ,k − θklk√

σ 2
xk |θ,k + σ 2lk

)

+ exp

(
2θk(ω − μ xk |θ,k)

σ 2 + 2θ2k σ 2
xk |θ,k

σ 4

)
Φ

(−ω + μ xk |θ,k − θklk − 2θkσ 2
xk |θ,k

σ 2√
σ 2
xk |θ,k + σ 2lk

)

(6.73)

where μ xk |θ,k and σ 2
xk |θ,k are obtained in (48) and (49). and μ xk |θ,k is a function

of θk .
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From (51) and θk |Y 1:k ∼ N (θ̂ k|k, κ2
θ,k), we further have

FLk |Y 1:k ( lk |Y 1:k) = E θk |Y 1:k
[
E xk |θk ,Y 1:k [FLk |θk ,xk ,Y 1:k ( lk | θk, xk,Y 1:k)]

]

= 1 − E θk |Y 1:k

⎡
⎣Φ

(
ω − μ xk |θ,k − θklk√

σ 2
xk |θ,k + σ 2lk

)⎤⎦

+ E θk |Y 1:k

[
exp

(
2θk(ω − μ xk |θ,k)

σ 2
+ 2θ2

k σ 2
xk |θ,k

σ 4

)
Φ

(−ω + μ xk |θ,k − θklk − 2θkσ 2
xk |θ,k

σ 2√
σ 2
xk |θ,k + σ 2lk

)]
. (6.74)

For the first expectation part in (6.91), the following result is derived from
Lemma6.3.

E θk |Y 1:k

⎡
⎣Φ

(
ω − μ xk |θ,k − θklk√

σ 2
xk |θ,k + σ 2lk

)⎤⎦

= E θk |Y 1:k

⎡
⎣Φ

(
ω − x̂ k|k − ρk

κx,k
κθ,k

(θk − θ̂ k|k) − θklk√
σ 2
xk |θ,k + σ 2lk

)⎤⎦

= E θk |Y 1:k
[
Φ(C1,k + D1,kθk)

]

= Φ

(
C1,k + D1,k θ̂ k|k√

1 + D2
1,kκ

2
θ,k

)
= Φ

(
ω − x̂ k|k − θ̂ k|klk√

B2
k κ

2
θ,k + Ck

)
(6.75)

where C1,k = w2,k/
√
Ck, D1,k = −Bk/

√
Ck .

For the second expectation part in (91), we can obtain the following through some
lengthy algebraic manipulations.

E θk |Y1:k

⎡
⎢⎣exp

(
2θk(ω − μ xk |θ,k)

σ 2 + 2θ2k σ 2
xk |θ,k

σ 4

)
Φ

(−ω + μ xk |θ,k − θklk − 2θkσ 2
xk |θ,k

σ 2√
σ 2
xk |θ,k + σ 2lk

)⎤⎥⎦

= E θk |Y1:k
[
exp(A2,kθk + B2,kθ

2
k )Φ(C2,k + D2,kθk)

]

= 1√
1 − 2B2,kκ

2
θ,k

exp

(2A2,k θ̂ k|k + A2
2,kκ

2
θ,k + 2B2,k θ̂

2
k|k

2(1 − 2B2,kκ
2
θ,k)

)
Φ

×
(
C2,k + D2,k θ̂ k|k + A2,k D2,kκ

2
θ,k − 2B2,kC2,kκ

2
θ,k√

(1 − 2B2,kκ
2
θ,k)

2 + D2
2,kκ

2
θ,k(1 − 2B2,kκ

2
θ,k)

)
(6.76)

with
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A2,k = 2
w2,k

σ 2
, B1,k = ρk

κx,k

κθ,k
− lk, B2,k = −2

Ak

σ 4
,

C2,k = − w2,k√
Ck

, D2,k = 1√
Ck

(
B1,k − 2σ 2

xk |θ,k

σ 2

)
,

where w1,k,w2,k, Ak, Bk,Ck is obtained above, and the condition 1− 2B2,kκ
2
θ,k > 0

is ensured by the existence of FLk |Y 1:k ( lk |Y 1:k) = E θk ,xk |Y 1:k [FLk |θk ,xk ,Y 1:k ( lk | θk, xk,
Y 1:k)] in this case, and canbe formally provedby themathematics induction principle.

This completes the proof part for FLk |Y 1:k ( lk |Y 1:k). Now we turn the attention to
the mean, and variance of the RUL in this case, i.e. E( Lk |Y 1:k), and var( Lk |Y 1:k),
respectively.

Based on the property of the expectation operator, we can compute E( Lk |Y 1:k),
and var( Lk |Y 1:k) as

E( Lk |Y 1:k) = E θk ,xk |Y 1:k [E( Lk | θk, xk,Y 1:k)]
= E θk |Y 1:k

[
E xk |θk ,Y 1:k [E( Lk | θk, xk,Y 1:k)]

]
= E θk |Y 1:k [E( Lk | θk,Y 1:k)] , (6.77)

var( Lk |Y 1:k) = E θk ,xk |Y 1:k [var( Lk | θk, xk,Y 1:k)] + var θk ,xk |Y 1:k [E( Lk | θk, xk,Y 1:k)]
= E θk |Y 1:k

[
E xk |θk ,Y 1:k [var( Lk | θk, xk,Y 1:k)]

]
+ var θk ,xk |Y 1:k [E( Lk | θk, xk,Y 1:k)] (6.78)

At the same time, we have the following results for the mean and variance of the
RUL conditional on θk , xk , and Y 1:k .

E( Lk | θk, xk,Y 1:k) = ω − xk
θk

, (6.79)

var( Lk | θk, xk,Y 1:k) = (ω − xk)σ 2

θ3
k

. (6.80)

It is therefore direct to get the result for the mean of the RUL estimation by the
above derivation, and the fact in (73) as

E( Lk |Y 1:k) = E θk |Y 1:k

[
E xk |θk ,Y 1:k

[
ω − xk

θk

]]
= E θk |Y 1:k

[
ω − μ xk |θ,k

θk

]

= E θk |Y 1:k

[
ω − x̂ k|k − ρk

κx,k
κθ,k

(θk − θ̂ k|k)

θk

]

=
[
ω − x̂ k|k + ρk

κx,k

κθ,k
θ̂ k|k)

]
E θk |Y1:k

[
1

θk

]
− ρk

κx,k

κθ,k
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=
[
ω − x̂ k|k + ρk

κx,k

κθ,k
θ̂ k|k)

]√
2

κθ,k
D

(
θ̂ k|k√
2κθ,k

)
− ρk

κx,k

κθ,k

= w2,k Dk − ρk
κx,k

κθ,k
(6.81)

where Dk = √
2D(θ̂ k|k/(

√
2κθ,k))/κθ,k and D(θ̂ k|k/(

√
2κθ,k)) is theDawson integral

for θ̂ k|k/(
√
2κθ,k).

As for the formulation of var( Lk |Y 1:k), with the help of the facts in (73) and (74),
we have the result for the first term of the last part in (95).

E θk |Y 1:k
[
E xk |θk ,Y 1:k [var( Lk | θk, xk,Y 1:k)]

] = E θk |Y 1:k

[
E xk |θk ,Y 1:k

[
(ω − xk)σ 2

θ3
k

]]

= E θk |Y 1:k

[
(ω − μ xk |θ,k)σ

2

θ3
k

]

= E θk |Y 1:k

[
(ω − x̂ k|k − ρk

κx,k
κθ,k

(θk − θ̂ k|k))σ 2

θ3
k

]

= E θk |Y 1:k

[
(ω − x̂ k|k + ρk

κx,k
κθ,k

θ̂ k|k)σ 2

θ3
k

−
ρk

κx,k
κθ,k

σ 2

θ2
k

]

= w1,k E θk |Y 1:k

[
1

θ3
k

]
− ρkσ

2 κx,k

κθ,k
E θk |Y 1:k

[
1

θ2
k

]

= w1,k θ̂
2
k|k

κ4
θ,k

Dk − w1,k

2κ2
θ,k

Dk − ρkσ
2 κx,k

κ3
θ,k

Dk + ρk
κx,k

κ3
θ,k

σ 2 − w1,k θ̂ k|k
2κ4

θ,k

. (6.82)

At the same time, we have the result for the second term of the last part in (95) as

var θk ,xk |Y1:k [E( Lk | θk , xk ,Y1:k)] = var θk ,xk |Y1:k

(
ω − xk

θk

)

= E θk ,xk |Y1:k

[(
ω − xk

θk

)2
]

−
[
E θk ,xk |Y1:k

(
ω − xk

θk

)]2

= E θk ,xk |Y1:k

[
ω2 − 2ωxk + x2k

θ2k

]
− [E( Lk |Y1:k)]2

= E θk |Y1:k

[
ω2 − 2ωμ xk |θ,k + μ2

xk |θ,k + σ 2
xk |θ,k

θ2k

]
− [E( Lk |Y1:k)]2

= E θk |Y1:k

[ω2 − 2ω(x̂ k|k + ρk
κx,k
κθ,k

(θk − θ̂ k|k)) + (x̂ k|k + ρk
κx,k
κθ,k

(θk − θ̂ k|k))2 + σ 2
xk |θ,k

θ2k

]

−
[
E( Lk |Y1:k)

]2

=
[
ω2 − 2ω(x̂ k|k − ρk

κx,k

κθ,k
θ̂ k|k) + σ 2

xk |θ,k + (x̂ k|k − ρk
κx,k

κθ,k
θ̂ k|k)2

]
E θk |Y1:k

[
1

θ2k

]
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+ ρ2
k

κ2
x,k

κ2
θ,k

− [E( Lk |Y1:k)]2

+ 2

[
ρk

κx,k

κθ,k
(x̂ k|k − ρk

κx,k

κθ,k
θ̂ k|k) − ωρk

κx,k

κθ,k

]
E θk |Y1:k

[
1

θk

]

= ρ2
k

κ2
x,k

κ2
θ,k

+ 2HkDk − Gk

κ2
θ,k

(1 − θ̂ k|k Dk) − [E( Lk |Y1:k)]2, (6.83)

with

Hk = ρk
κx,k

κθ,k

(
x̂ k|k − ρk

κx,k

κθ,k
θ̂ k|k

)
− ωρk

κx,k

κθ,k
, (6.84)

Gk = ω2 − 2ω

(
x̂ k|k − ρk

κx,k

κθ,k
θ̂ k|k

)
+ σ 2

xk |θ,k +
(
x̂ k|k − ρk

κx,k

κθ,k
θ̂ k|k

)2

. (6.85)

In sum of above results, we finally obtain the result for the variance of the RUL
estimation in this case as

var( Lk |Y 1:k) = E θk ,xk |Y 1:k [var( Lk | θk, xk,Y 1:k)] + var θk ,xk |Y 1:k [E( Lk | θk, xk,Y 1:k)]

= w1,k θ̂
2
k|k

κ4
θ,k

Dk − w1,k

2κ2
θ,k

Dk − ρkσ
2 κx,k

κ3
θ,k

Dk + ρk
κx,k

κ3
θ,k

σ 2 − w1,k θ̂ k|k
2κ4

θ,k

+ ρ2
k

κ2
x,k

κ2
θ,k

+ 2HkDk − Gk

κ2
θ,k

(1 − θ̂ k|k Dk) − [E( Lk |Y 1:k)

= Qk + (Jk + 2Hk + Gk

κ2
θ,k

θ̂ k|k)Dk − [E( Lk |Y 1:k)]2. (6.86)

where

Jk = w1,k θ̂
2
k|k

κ4
θ,k

− w1,k

2κ2
θ,k

− ρk
κx,k

κ3
θ,k

σ 2, (6.87)

Qk = ρk
κx,k

κ3
θ,k

σ 2 − w1,k θ̂ k|k
2κ4

θ,k

+ ρ2
k

κ2
x,k

κ2
θ,k

− Gk

κ2
θ,k

. (6.88)

This completes the proof of Theorem6.5.

From the above results, once a new degradation measurement is available, we can
obtain the estimation of zk conditional on Y 1:k by the state-space model (6.54) with
zk ∼ N ( ẑ k|k, P k|k). Therefore, the RUL of this monitored system can be adaptively
estimated using Theorem6.5. Comparing the results in Theorems6.3 and 6.4 with
the results in Theorem6.5, we find that the uncertainties in the underlying stochastic
degradation process, estimating the degradation state xk , and random effect part,
can propagate into the PDF of the RUL, f Lk |Y 1:k ( lk |Y 1:k). Also, the parameters in
f Lk |Y 1:k ( lk |Y 1:k) can be updated using the Kalman filter such as θ̂ k|k , and κ2

θ,k . Thus,
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the estimated RUL by Theorem6.5 accounts for three-source variability at the same
time.

For the model (6.54) to be used for real-time estimation, several unknown initial
parameters including σ 2, γ 2, μθ , and σ 2

θ needed to be estimated from the historical
data. Before determining these parameters in the next section, we have the following
remark regarding the linkage of the RUL estimation results in Theorem6.5 with the
previous results.

Remark 6.3 Corresponding toRemark6.1, it is not difficult to verify from the deriva-
tion process (see the online supplementary material) of Theorem6.5 that, by select-
ing the parameters σ 2, γ 2, σ 2

θ , the results in Theorem6.5 can reduce to the RUL
estimation results which only consider one- or two-source variability, as listed in
Remark6.1. �

6.4 Parameter Estimation

We now proceed to the issues regarding the estimation of σ 2, γ 2, μθ , σ
2
θ to ini-

tialize the degradation model and to implement the RUL estimation. Let Θ =
(σ 2, γ 2, μθ , σ

2
θ )′ be the unknown parameter vector, where (·)′ denotes the vector

transposition. To obtain the maximum likelihood estimation (MLE) of Θ from the
past degradation measurements, it is necessary to establish the identifiability of the
degradation model under three-source variability. To do so, suppose there are N
physically independently tested systems of the same kind, and the i th system is
monitored at ordered times t1, . . . , tM , with observed degradation measurements
{Yi (t j ) = yi, j , i = 1, . . . , N , j = 1, . . . , M}where M denotes the available number
of the degradation measurements for each system. Due to the physical independence
of the tested systems, we further suppose that the monitored degradation measure-
ments from different systems are statistically independent. Therefore, from (6.2), the
measurement at the j th time point t j for the i th system is given by

Yi (t j ) = θi t j + σ B(t j ) + εi j , (6.89)

where θi are statistically independent and identically distributed following N (μθ , σ
2
θ ),

and εi j is the measurement error with εi j ∼ N (0, γ 2).
For convenience, we only use the degradation measurements of the i th system to

investigate the identifiability of the degradation model. let t = (t1, . . . , tM)′, yi =
(yi,1, . . . , yi,M)′. According to (6.89) and the statistically independent increments
property of BM, we have that yi is multivariate normally distributed with mean and
variance as follows.
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yi ∼ N (μ,Σ), (6.90)

μ=μθ t, (6.91)

Σ = Ω + σ 2
θ t t

′, (6.92)

with

Ω = σ 2Q + γ 2 IM , (6.93)

Q = [min{ti , t j }]1≤i, j≤M , (6.94)

where IM is an identity matrix of order M .
To establish the identifiability of the degradation model, we first introduce the

following lemma ([48], pp. 118).

Lemma 6.6 Define a regression model y ∼ N (h(α),V(α,β)), where y is the data
vector, h(α) is a linear or nonlinear vector function of the parameter vector α, and
V (α,β) is the covariance matrix dependent on α and another parameter vector
β. Then the regression model is identifiable iff h(α1) = h(α2), and V (α1,β1) =
V (α2,β2) imply that α1 = α2 and β1 = β2.

Based onLemma6.6, we can establish the identifiability theorem for the presented
model under three-source variability in the following.

Theorem 6.6 For the presented model with degradation measurements yi , the
degradation model is identifiable iff the number of the degradation measurements is
not less than 3, i.e., M ≥ 3.

Proof It is known from (57) through (61) that yi ∼ N (μθ t, σ 2
θ t t

′ + σ 2Q + γ 2 IM).
Thus the sufficient and necessary condition for the identifiability of the degradation
model under yi is

{
μθ1 t = μθ2 t
σ 2

θ1
t t ′ + σ 2

1 Q + γ 2
1 IM = σ 2

θ2
t t ′ + σ 2

2 Q + γ 2
2 IM

⇔
{

μθ1 = μθ2 , σ
2
θ1

= σ 2
θ2

σ 2
1 = σ 2

2 , γ 2
1 = γ 2

2
(6.95)

It is straightforward that μθ1 t = μθ2 t means μθ1 = μθ2 . In addition, for the
equality of the covariance function, we have

(σ 2
θ1

− σ 2
θ2
)t t ′ + (σ 2

1 − σ 2
2 )Q + (γ 2

1 − γ 2
2 )IM = 0. (6.96)

It is noted that the off-diagonal elements of IM are zeros, and thuswe pay attention
to the off-diagonal elements of (107). For the off-diagonal entry (i, j) of (107) with
i �= j , based on the formulations of Q and t t ′, we have

(σ 2
θ1

− σ 2
θ2
)t j + (σ 2

1 − σ 2
2 ) = 0, 2 ≤ j �= i ≤ M. (6.97)

It is easy to verify that, if M < 3, the conditions in (106) do not hold. Instead,
when M = 3, we have the unique solution σ 2

θ1
− σ 2

θ2
= 0 and σ 2

1 − σ 2
2 = 0, because
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the monitored times are ordered, i.e.,

∣∣∣∣ t2 1t3 1

∣∣∣∣ �= 0. This result implies that σ 2
θ1

= σ 2
θ2

and σ 2
1 = σ 2

2 . Thus, from (107), we know that γ 2
1 = γ 2

2 . From Lemma6.6, the
presented degradation model is identifiable under yi when M = 3. It is not difficult
to verify that the identifiability holds for the case M > 3. This completes the proof.

In the following, we assume M ≥ 3, and utilize the degradation measurements of
the N tested systems to estimate σ 2, γ 2, μθ , σ

2
θ . For the i th system, we have known

that
yi ∼ N (μθ t,Ω + σ 2

θ t t
′). (6.98)

Denote Y = ( y1, y2, . . . , yN )′. Due to the statistical independence assumption
of the degradation measurements of different systems, the log-likelihood function
over parameter vector Θ can be written as

�(Θ |Y ) = −NM

2
ln(2π) − N

2
ln
∣∣Ω + σ 2

θ t t
′∣∣

− 1

2

∑N

i=1

(
yi − μθ t

)′
(Ω + σ 2

θ t t
′)−1

(
yi − μθ t

)
. (6.99)

To facilitate the MLE, we re-parameterize the parameters by σ̃ 2 = σ 2/σ 2
θ , γ̃ 2 =

γ 2/σ 2
θ , Ω̃ = Ω/σ 2

θ . As such, (6.99) can be rewritten as

�(Θ |Y ) = − NM

2
ln(2π) − NM

2
ln σ 2

θ − N

2
ln
∣∣∣Ω̃ + t t ′

∣∣∣
− 1

2σ 2
θ

∑N

i=1

(
yi − μθ t

)′
(Ω̃ + t t ′)−1 ( yi − μθ t

)
. (6.100)

Taking the first partial derivative of �(Θ |Y ) with respect to μθ and σ 2
θ generates

∂�(Θ |Y )

∂μθ

= 1

σ 2
θ

t ′(Ω̃ + t t ′)−1
∑N

i=1

(
yi − μθ t

)
, (6.101)

and

∂�(Θ |Y )

∂σ 2
θ

= −NM

2σ 2
θ

+ N

2σ 4
θ

∑N

i=1

(
yi − μθ t

)′
(Ω̃ + t t ′)−1

(
yi − μθ t

)
. (6.102)

Then, for given values of σ̃ 2, γ̃ 2, and setting these two derivatives to zero, the
results of the MLE for μθ , and σ 2

θ can be expressed as

μ̂θ (Θ̃) = t ′(Ω̃ + t t ′)−1∑N
i=1 yi

N (t ′(Ω̃ + t t ′)−1 t)
, (6.103)

and
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σ̂ 2
θ (Θ̃) = 1

NM

∑N

i=1

(
yi − μ̂θ (Θ̃)t

)′
(Ω̃ + t t ′)−1

(
yi − μ̂θ (Θ̃)t

)
. (6.104)

Note that μ̂θ (Θ̃), and σ̂ 2
θ (Θ̃) are respectively the MLE of μθ , and σ 2

θ when other
parameters are fixed at Θ̃ . Then the profile likelihood function for Θ̃ can be obtained
by substituting (6.103) and (6.104) into (6.100) as

�(Θ̃ |Y ) = −NM

2
ln(2π) − NM

2
− NM

2
ln σ̂ 2

θ (Θ̃) − N

2
ln
∣∣∣Ω̃ + t t ′

∣∣∣ . (6.105)

The MLE of σ̃ 2, γ̃ 2 can be obtained by maximizing the profile log-likelihood
function in (6.105) through a two-dimensional search. By substituting the MLE of
σ̃ 2, γ̃ 2 into (6.103) and (6.104), we can obtain the MLE for μθ and σ 2

θ , and then
the MLE for σ 2 and γ 2 can be achieved by inverting the relations σ̃ 2 = σ 2/σ 2

θ and
γ̃ 2 = γ 2/σ 2

θ , accordingly. Once the parameters σ 2, γ 2, μθ , σ
2
θ are estimated, the

results in Sect. 6.2 can be used to estimate the RUL for a system in service on the
basis of its real-time measurements.

Remark 6.4 It is noted that the above parameter estimation method is suitable for
the balanced case, i.e., N tested systems are measured at common monitored times.
However, the estimation method can be easily extended to the unbalanced case, i.e.,
different monitored times for different systems. In addition, the parameter estimation
for the special cases listed in Remark6.1 can be similarly implemented. This further
validates the generality of the developed method, in terms of not only the RUL
estimation but also the parameter estimation procedure. �

Remark 6.5 In general, to accurately estimate the parameters associated with the
random effect, the number of systems N under test should be large enough. Other-
wise, it may be wondered that the estimation error for μθ and σθ would be large.
However, when the presented method in Sect. 6.2 is used to estimate the RUL of
an operating system, the estimation error for μθ and σθ could be partially reduced
even for small N . The presented method considers the updating of the random effect
parameter θ based on real-time monitored degradation signals. This updating mech-
anism is achieved by state-space modeling and Kalman filtering techniques. On the
other hand, the estimations ofμθ , and σθ are only used as initial values of the Kalman
filter; and instead, the posterior updates ofμθ , and σθ are used in the RUL estimation,
corresponding to θ̂ k|k , and κθ,k , respectively. In the case study, we will illustrate the
updates of θ̂ k|k , and κθ,k , whose initial values are μθ , and σθ , respectively. �

6.5 Experimental Studies

In this section, a practical case study for gyros in an inertial platform is provided to
illustrate the presented modeling framework. Here, three measures are employed to
enable comparisons between the results with three-source variability, and the results
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only considering one- or two-source variability. The first measure, AIC [49], is used
to compare the fitting of the models to the measured degradation data, calculated by

AIC = −2(max �) + 2p, (6.106)

where p is the number of estimated model parameters, and max � is the maximized
likelihood. The AIC is frequently used in engineering and the statistical literature
to guide model selection because the AIC can balance the tradeoff between model
fitting and the over-parametrization problem. The smallest AIC value corresponds
to the best fitting accuracy.

The second measure is the MSE about the actual RUL obtained at each measure-
ment point, defined as [50]

MSEk = E
[
(Lk − L̃k)

2
]
, (6.107)

where L̃k denotes the actual RUL obtained at tk , and the expectation is evaluated on
the estimated RUL conditional on the available data.

Based on the MSE, we further define the total MSE (TMSE) as the sum of the
MSE at each CM point over the whole life cycle, as

T MSE =
∑M

k=1
MSEk,

where M is the number of the total observations.
The thirdmeasure is theREof the observed lifetime and the estimated lifetime. Let

T̃ denote the lifetime corresponding to a path of the observed degradation signals,
and let T̂k be the estimated lifetime at tk . If we use the mean lifetime as a point
estimation of the lifetime, we have T̂k = tk + E [Lk], where E [Lk] is the estimated
mean RUL at tk . Hence, the RE for the lifetime at tk is

REk =
∣∣∣T̃ − T̂k

∣∣∣
T̃

. (6.108)

In the following, we use these definedmeasures to evaluate the performance of the
model fitting and RUL estimation for different cases based on the gyros’ degradation
signals.

6.5.1 Problem Description

A gyro fixed on an inertial platform is a key device of the inertial navigation system
widely applied inweapon systems and space equipment. The gyro having twodegrees
of freedom from the driver axis, and sense axis is a mechanical structure to sense
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angular velocity, and linear acceleration of the inertial platform, respectively [32].
When the inertial platform is operating, the wheel of the gyro rotates at very high
speeds, and can lead to rotation axis wear. As the wear is accumulated, the bearings
on the gyro’s electric motor will become deformed, and an increase of the gyro drift
occurs. Past statistics data show that almost 70% of the failures of inertial platforms
result from gyroscopic drift, and such drift is largely the result of bearing wear. It
is therefore natural to consider that the gyro drift is related to the physical failure
process of the inertial platform, and thus utilize the monitored gyro’s drift data as
the degradation signals to evaluate the health state of the inertial platform.

In this study, we use the drift-based degradation signals based on the fact that
the values of the gyro’s drift are correlated with the severity of the gyro’s degrada-
tion. Generally, six drift coefficients can be obtained, including three constant drift
coefficients, and three stochastic drift coefficients. However, the constant drift coeffi-
cients are largely due to the possible errors in fixing the gyro, and thus the associated
signals are stationary; see Fig. 6.1 for an illustration of the measured data of one
constant drift coefficient over time. Therefore, this kind of coefficient cannot reflect
the degradation trend. Among stochastic drift coefficients, the drift coefficient along
the sense axis generally plays a dominant role in the gyro’s degradation failure. As
such, we take the measured data along the sense axis as the degradation signals, and
use them for degradation modeling and RUL estimation. We define the failure of
the gyro as the first time of the underlying drift state hitting the threshold 0.36 ◦/h,
which is determined at the design stage, and strictly enforced in practice.

FromNovember 2011 to July 2012, we carried out the experiments on three gyros
of the same type. In the experiments, the measured drift data were collected under
the sampling interval of 2.5 hours, and a gravity acceleration of 9.794121 m/s2,
where a PC-based data acquisition system was used to acquire and store the drift
data. After the experiments, we can collect all the drift data of three gyros. The data
sets include the time-to-failure data, constant drift coefficients, and stochastic drift
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Fig. 6.1 Illustration of the measured constant drift coefficient
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coefficients for three gyros. The first gyro was running to failure with the terminated
life of 528h, and 210 points of drift coefficients data were collected. The remaining
two gyros were still functioning after testing 210monitoring data, but we stopped the
test to reduce experimental costs. The data of the drift coefficients along the sense
axis for these three gyros are illustrated in Fig. 6.2, which contains the measured
degradation signals of gyros contaminated by the measurement variability, i.e., Y 1:k .

Figure6.2 shows that the degradation paths of different gyros exhibit different
degradation rates. In addition, it is observed that the degradation signals of gyros
experience a lot of fluctuations. Such fluctuations are possibly the result of uncer-
tainties in the underlying degradation process and measurement process. In physics,
a Wiener process aims at modeling the movement of small particles in fluids and air
with tiny fluctuations. The tiny increase or decrease in degradation over a small time
interval behaves similarly to the random walk of small particles in fluids and air.
This type of stochastic processes is appropriate to characterize the path of the gyro’s
degradation process [32, 33, 51]. Therefore, we use the proposed Wiener process
based model to analyze the gyro’s data in this chapter. Additionally, it is possible that
the uncertain measurements before the failure time hit the threshold. However, the
RUL of gyros defined in (4) is based on the underlying degradation states X1:k , i.e.,
the stochastic process {X (t), t ≥ 0}. Thus, we cannot simply determine the failure
time according to the degradation measurements. Rather, the failure time should be
determined by the underlying degradation states X1:k , which are estimated from the
degradation measurements. All the above observations may encourage that, for a
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Fig. 6.2 Three measured gyro degradation signals for stochastic drift coefficients
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degradation model to be realistic, it is more appropriate to incorporate three-source
variability into the degradation modeling process. To show the superiority of incor-
porating three-source variability, we consider the following three competing cases
for comparative studies.

1. Case 1: γ 2 = 0, the measurement uncertainty is ignored, and the results in
Theorem6.3 are used for RUL estimation.

2. Case 2: σ 2
θ = 0, the random effect is ignored, and the results in Theorem6.4 are

used for RUL estimation.
3. Case 3: γ 2 = 0, σ 2

θ = 0, only the temporal variability is considered, and the
results in Theorem6.2 are used for RUL estimation.

It is noted that Case 1 and Case 2 correspond to the cases only considering two-
source variability, and Case 3 corresponds to the case only taking one-source vari-
ability. By contrast, we term our model with three-source case as Case 4. In the
following, we use the degradation signals of the second and third gyros to estimate
the model parameters and compare the model fitting for the above four cases, and
the degradation signals of the first gyro are used for validation of the estimated RUL.

6.5.2 Comparisons for Model Fitting

Using the parameter estimation method presented in Sect. 6.4, we can obtain the esti-
mated results of the parameters for four considered cases. The estimated parameters
and the associated values of the log-likelihood function (log-LF) and AIC are shown
in Table6.2.

As shown in Table6.2, the models with three-source variability have the greatest
log-LF, and the least AIC. This result indicates that considering three-source vari-
ability in degradation modeling is necessary and can significantly improve the model
fitting in terms of the AIC. The reason for this indication is clarified as follows. From
the results in Case 1 and Case 4, we can learn that the unit-to-unit variability exists
with the value greater than 0.0004. Such a value could affect the fitting of the degra-
dationmodeling because the estimate forμθ is about 0.0007, but the standard error σθ

has the same order of magnitude as μθ . Additionally, we can find in Case 2 and Case
4 that the measurement uncertainty cannot be ignored because the estimated γ is

Table 6.2 Estimated parameters and associated values for log-LF and AIC

μθ σθ σ γ log-LF AIC

Case 1 0.000776 0.000479 0.011011 – 501.76 −997.52

Case 2 0.000769 – 0.010630 0.181364 409.76 −813.52

Case 3 0.000782 – 0.010945 – 391.17 −778.34

Case 4 0.000726 0.000487 0.010963 0.277260 576.65 −1145.3
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Fig. 6.3 Updates of θ̂ k|k and κθ,k using degradation signals of the first gyro

relatively greater in the degradation signals. Therefore, it is not uncommon that Case
3 has the worst model fitting because both the measurement uncertainty and unit-to-
unit variability are ignored in this case. As a result of the comparisons, it is suggested
that the degradation model with three-source variability is the best fitting model.

On the other hand, it is observed that the estimated values of γ and σ are much
larger than the values of μθ and σθ , which may indicate that the influence brought by
the drift coefficient (represented by μθ and σθ ) can be neglected. Our points regard-
ing this phenomenon are as follows. According to the used underlying degradation
model (1), and the measurement model (2), the mean of the degradation quantity at
time t is E(X (t)) = μθ t , and the corresponding variance is var(X (t)) = σ 2

θ t
2+σ 2t .

Accordingly, the variance of the measured degradation signal at discrete time tk is
var(Y (tk)) = σ 2

θ t
2
k + σ 2tk + γ 2. We can observe that the effect of μθ , σθ , σ in the

degradation model is time-dependent, while γ not. Particularly, μθ , and σθ will have
more influence over time. Therefore, the influence of the drift coefficient cannot be
neglected. For example, using the parameters in Table6.2 (Case 4), at tk = 500, we
have E(X (tk)) = μθ tk = 0.363, σ 2

θ t
2
k = 0.059, σ 2tk = 0.0601, γ 2 = 0.0769. All

the terms in the variance var(Y (tk)) (or var(X (tk))) have the same order of magni-
tude. Thus we cannot neglect the effect of μθ and σθ , particularly when the system’s
age t is large.

6.5.3 Comparisons for the Estimated RUL

Before going into the RUL estimation results, it is worthwhile to note that the number
of systems under test used for estimating the parameters associated with the random
effect is small because the gyro is very expensive, and funding is limited. According
to Remark6.5, we know that the estimation of the random effect parameter θ can
be updated using real-time monitored degradation signals. Based on the estimated
parameters in Sect. 6.5, and the degradation signals of thefirst gyro, the updates of θ̂ k|k
and κθ,k , whose initial values are θ̂ 0|0 = μθ = 0.000726 and κθ,0 = σθ = 0.000487,
are illustrated in Fig. 6.3.
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Fig. 6.4 Comparative results for RUL estimations in terms of MSE for the first gyro

As shown in Fig. 6.3, the posterior mean θ̂ k|k and standard deviation κθ,k of θ are
adaptively adjusted by the monitored degradation signals. Particularly, it is observed
that κθ,k is decreasing as the degradation signals accumulated. This result implies that
the variability caused by the random effect is reduced, and the estimation for θ tends
to be tailored to this gyro under study. The above updating mechanism hopefully
alleviates the estimation error for μθ and σθ resulted by the limit of the number of
systems under test.

Now, we compare the performance of the estimated RUL of Case 4 against the
results of Cases 1 through 3. First, the MSEs about the RUL associated with these
cases can be obtained using the estimated PDF of the RUL and the definition of the
MSE. We show the evolving paths of the MSEs of Cases 1–3 against Case 4 at each
CM point in Fig. 6.4.

From Fig. 6.4, we find that the results with three-source variability maintain the
MSEs of the estimated RUL at a relatively low level compared with other three
cases. In Cases 1 through 3, the MSEs suffer from many large fluctuations which
result from the uncertain degradation signals because these three cases do not fully
consider the uncertainties in the degradation signals, i.e., taking either two-source or
only one-source variability. By contrast, Case 4 avoids the large change of MSE in
the estimated RUL because it takes all three-source variability simultaneously.

Another observation in Fig. 6.4 is that Case 2 behaves better than Cases 1 and 3
though the random effect is not considered. This behavior is the benefit of using the
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observation history of the degradation signals because the estimation in Case 2 is
conditional on the real-time observed degradation signals up to the current CM point
by Kalman filter, as implied by Theorem6.4. Nevertheless, Case 4 is still better than
Case 2 in that the random effect cannot be ignored in this case study, as discussed in
Sect. 6.5.

Last, Case 1 and Case 3 have larger MSEs in most CM points because the mea-
surement uncertainty is not taken into account. But the results in Table6.2 shows that
the measurement errors exist, and the variance is relatively large. Correspondingly,
the TMSEs for Cases 1 through 4 are 1.5E+6, 1.8E+6, 9.8E+5, and 3.5E+5, respec-
tively. These results are consistent with the above discussions, and further verify that
the degradation modeling with three-source variability has a better RUL estimation,
and can improve the estimation accuracy.

To check if theMSE of the RUL estimation is stable or not, we calculate theMSEs
of the RUL estimation of the second gyro, as illustrated in Fig. 6.5.

In the computations corresponding to Fig. 6.5, we set the threshold to 0.3 ◦/h for
numerical validation, which approximately corresponds to the lifetime of 525 h based
on the underlying degradation state. From the results in Fig. 6.5, we can observe that
the discussions for Fig. 6.4 also apply to Fig. 6.5. Thus, we verify that the MSE of
the RUL estimation by the proposed method is stable for the gyros’ data. Of course,
we can also use the third gyro’s data to do the validation. Those results are consistent
with the results of the first and second gyros.
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Fig. 6.5 Comparative results for RUL estimations in terms of MSE for the second gyro
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Table 6.3 Estimated mean lifetimes and corresponding REs

30th percentile 50th percentile 70th percentile 90th percentile

Case 1 636.45 (20.54%) 612.81 (16.06%) 600.52 (13.73%) 573.09 (8.54%)

Case 2 472.46 (10.52%) 567.17 (7.42%) 554.64 (5.05%) 546.24 (3.45%)

Case 3 473.74 (10.25%) 575.52 (9.0%) 599.69 (13.58%) 601.48 (13.92%)

Case 4 488.81 (7.42%) 505.63 (4.24%%) 548.93 (3.96%) 535.44 (1.41%)

The degradation signals can also be used for estimating the lifetime of the first
gyro. For comparisons, we compute the estimated mean lifetimes and the corre-
sponding REs (in the bracket) at the 30th, 50th, 70th, and 90th percentiles of the
lifetime, as summarized in Table6.3.

Observe that the results in Table6.3 are consistent with the previous discussions.
Therefore, Table6.3 further provides the supporting evidence for the modeling moti-
vation in this chapter; taking three-source variability simultaneously is necessary in
the RUL estimation with the observation history dependency and real-time updating.
It is indicated that taking three-source variability and incorporating the real-time
degradation signals can improve the accuracy of the RUL estimation.
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Chapter 7
RUL Estimation Based on a Nonlinear
Diffusion Degradation Process

7.1 Introduction

Because of limited natural resources, considerably increased safety and environ-
mental concerns, and the drive to reduce operating costs, critical assets need to be
managed over their entire life cycles—from design, manufacture, sale, and operation
to their end of life in order to optimize life cycle management and reduce negative
impact on the environment [1, 2]. For safety-critical equipment, such as aviation
control systems and nuclear power generators, the accurate and early estimation of
failure is critical in order to avoid catastrophic events that may cause severe damage
to equipment, loss of human lives, and environmental disasters. A recent example
was the explosion of the Deepwater Horizon oil well in the Gulf of Mexico, which
resulted in the loss of lives, harm to the environment, and impact on average citizens.
There were indications that this disaster indirectly resulted from the overuse of the
system due to strong financial pressure. But the direct cause was the failure of the
‘last line of defence’, the so-called blowout preventer. The emerging discipline of
prognostics and health management (PHM) could have addressed this problem [3].

PHM is a methodology that permits the assessment of the reliability of a system
under its actual application conditions and exercises necessary management actions.
Prognostics is a key step in PHM. Prognostics utilizes in situ monitoring and analysis
to assess system degradation and determine the remaining useful life (RUL) of an
asset. The RUL of an asset is defined as the length of time from the present time
to the end of useful life. The need for RUL estimation is obvious, since it relates
to a frequently asked question in industry, which is how long a monitored asset can
survive based on the available information. Based on RUL estimation, appropriate
actions can be planned. Especially for critical equipment, such as aircraft engines or
inertial navigation platforms used in aerospace and weapon systems, determining if
and when to take them out of service is important from both a cost-effective point of
view and a safety point of view.

It is critically important to assess the RUL of an asset while it is in use, as this
impacts the planning ofmaintenance activities, the supply chain, the replenishment of

© National Defense Industry Press and Springer-Verlag GmbH Germany 2017
X.-S. Si et al., Data-Driven Remaining Useful Life Prognosis Techniques,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-662-54030-5_7
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the inventory system, operational performance, and the profitability of the owner of an
asset [4–12]. RUL estimation has also played an important role in themanagement of
product reuse and recycling,which has an impact on human life, energy consumption,
raw material use, pollution, and landfills [2, 13, 14]. The reused products must have
sufficiently long lives to be able to be reused.

In the early 1980s, Derman et al. in [15] demonstrated the usefulness of lifetime
distributions in the context of system life extension. Traditional failure-time analysis
methods for estimating component lifetimes were heavily dependent on the time-to-
failure data or lifetime data [16, 17]. However, some critical and valuable systems
are not allowed to run to failure, or the tests to obtain failure information are very
expensive. Therefore, lifetime data is often hard to obtain. In such cases, degradation
data can be used as an alternate resource for lifetime analysis from an economical
and practical viewpoint [18–23]. In many situations, such as the drift degradation
of an inertial navigation system (INS) used in the aerospace industry, it is natural
to view the failure event of interest as the result of a stochastic degradation process
crossing a threshold level, i.e., to model the hitting time of the degradation as a time-
dependent stochastic process. Singpurwalla [24], Cox [25], and Aalen and Gjessing
[26] all advocated the development, adoption, and exploration of stochastic dynamic
models in theory and practice for reliability estimation. On the other hand, dynamic
environments induce changes in the physics of failure. Hence a stochastic process
approach to model degradation provides flexibility with respect to describing the
failure-generating mechanisms and the characteristics of the operating environment.
A key idea behind this is that the lifetime can be defined as the first hitting time
(FHT) of the degradation process reaching a failure threshold, and the probability
density function (PDF)of the failure time is thenmodeled as thePDFof theFHTof the
underlying stochastic process tomimic the true failure time.Lee andWhitmore in [27]
have given a comprehensive review of a variety of FHT models and have discussed
their potential. It is noted that even when the degradation process is observed to be at
or above the threshold level it does not necessarily mean that the system has actually
broken down. Such a threshold level is just a preset warning level that is set as a
boundary for observed degradation for a variety of reasons.

Among stochastic process–based models, diffusion processes are types of ran-
dom processes capable of describing random degradation [28, 29]. Brownian motion
(BM) with a linear drift is a special diffusion process that has become very popular
for degradation modeling in recent years. One of the most important advantages of
modeling the degradation process using BMwith a linear drift is that the distribution
of the FHT of such a process crossing a constant threshold can be formulated ana-
lytically. This is known as the inverse Gaussian distribution; it has many merits and
has been applied in reliability and lifetime analysis widely since the 1970s [30]. A
fundamental problem related to BM with a linear drift is that it can only describe a
linearly drifted diffusion process. However, nonlinearity exists extensively in prac-
tice and the linear model cannot trace the dynamic of such a degradation process. It
is more likely that degradation may accelerate at a later stage of life. Therefore, for a
model to be realistic it should incorporate some nonlinear structures. However, this
issue has not been well documented in the literature.
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Some nonlinear processes can be approximated to be near linear by some kind
of transformation on the degradation data, such as log transformation [31, 32] or
timescale transformation [33–35]. But these are limited to the cases that such trans-
formations exist, and not many nonlinear processes can be transformed in these
ways. There is also an implicit assumption used in the above transformation that
the random part of the transformed process is still BM, which may not always be
the case. This leads to the primary purpose of this chapter, which is to provide a
useful model that can model general nonlinear degradation directly without the use
of the transformations mentioned above. This would be particularly useful in cases
where the nonlinear degradation process cannot be transformed to a linear degrada-
tion by manipulating the data. From a mathematical and application point of view,
the difficulties encountered are mainly two kinds. First, as for a nonlinear-drifted
diffusion process, the distribution of FHT is related to solving the Fokker–Planck–
Kolmogorov (FPK) equation with boundary constraints [36]. For a nonlinear case,
this task is rather difficult and even impossible. Second, the available closed forms
of the PDFs of the FHT for nonlinear-drifted diffusion processes are very limited in
special cases [37, 38]. Simulations can be used to deal with nonlinear cases, and a
numerical solution approximation method was developed by Nardo et al. [39]. How-
ever, neither can provide a closed form of the PDF of the FHT, and both are subject
to long computation times and require a lot of memory. However, in the context of
PHM, it is necessary and valuable to derive and evaluate the PDF of FHT with a
closed form from the degradation process and provide rapid online estimation for
reliability analysis and maintenance scheduling.

From the above analysis, it is clear that nonlinear degradation processes have not
been studied thoroughly. In order to formulate the distribution of RUL, we first trans-
form the problem from calculating the FHT distribution of the nonlinear diffusion
process crossing a constant threshold into a standard BM crossing a time-dependent
boundary. This transformation is achieved by a well-known time-space transforma-
tion developed by Ricciardi [40]. It is noted that such a transformation is not on the
degradation data; rather, it is on the model, which differs from the transformations
in [31, 33–35]. Since there is no closed form for such a distribution, an analytical
approximation of the distribution of the FHT of the transformed process is obtained
in a closed form under a mild assumption. This is an important contribution to the
literature, which has not been reported before. The unknown parameters in the degra-
dation model are obtained using the maximum likelihood estimation (MLE) method,
and we use two goodness-of-fit measures to compare the model fit. We demonstrate,
using some real-world data sets, the usefulness of the proposed model and the neces-
sity of incorporating a nonlinear structure into the degradation model, which has
significantly improved the accuracy of RUL estimation.

The remaining parts of the chapter are organized as follows. Section7.2 reviews
the related literature with an emphasis on RULmodeling methods based on BMwith
drift. Section7.3 presents twomotivating examples and themodeling principle of our
degradation model. Section7.4 proposes the main theoretical results for calculating
the PDF of the FHT. Section7.5 discusses the procedure for parameter estimation.
Three practical examples are presented to verify the proposed model in Sect. 7.6.
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7.2 Literature Review

There are many methods for estimating RUL (see [3, 9, 41]). The methodologies
are largely classified into physics-of-failure, machine learning, and statistics-based
methods. Si et al. in [42] have presented a review on statistics-basedmethods for RUL
estimation. In statistics-based methods, there are models relying on the availability
of actual failure data as well as models needing a threshold for degradation to define
the failure. BM with drift belongs to the latter.

BM with drift was originally used to depict the random walk of small particles
in fluids and air in physics. The walk has a trend, so it is appropriate for modeling
a dynamic process with an increasing or decreasing trend. The random term is nor-
mally distributed, so it is not a monotonic process. Due to its clarity in concept and
its similarity to physical degradation processes, it has been widely applied in degra-
dation modeling and further extended to RUL estimation. BM with drift is a type of
stochastic process with Gaussian noise. The variance of the noise is a function of
time, and, therefore, the cumulative degradation is infinitely divisible, as required by
any physical degradation process [43]. This implies that the degradation described
by BM with drift is free from the constraint of the sampling frequency and intervals.
This is, to our understanding, a necessary property for a stochastic process to be able
to model a physical degradation process. The only other stochastic process to possess
such a property is the Gamma process [43].

Tseng et al. in [44] used BM with drift to determine the lifetime for the light
intensity ofLED lampsof contact image scanners.As an extension, Tseng andPeng in
[45] proposed an integratedWiener process tomodel the cumulative degradation path
of a product’s quality characteristics. Lee and Tang in [46] handled the failure-time
prediction problem based onBMwith drift under a time-censored degradation test, in
which a modified expectation and maximization algorithm was used to estimate the
mean failure time. A recent extension of the intermediate data for lifetime estimation
can be found in [47]. Padgett and Tomlinson in [48] applied BM with drift to model
accelerated degradation data andmake an inference about the lifetime under a normal
operating environment. Park and Padgett in [49, 50] applied BM with drift to model
the initial damage under accelerated testing and infer the lifetime. Park and Padgett
in [32] and Gebraeel et al. in [9] used log transformation to transform the exponential
path into a linear path and then used BM with drift to conduct lifetime estimation.
Joseph and Yu in [51] assumed that there existed some transformations that can
transform a nonlinear degradation process into a linear process, and then they used
BM with drift for degradation modeling and reliability improvement. Balka et al.
in [52] reviewed some methods of cure models based on FHT for BM with drift.
Though their review focused mainly on cure rate modeling in the biostatistics field,
the principle is the same as our RUL modeling. Further, Peng and Tseng in [53]
incorporated the random effect in the drift coefficient and measurement errors in BM
with a drift-based degradation process for lifetime assessment. In a recent chapter,
Wang et al. in [54] consideredBMwith drift using an adaptive randomdrift coefficient
for RUL estimation. From above, we observe that though many extensions of RUL
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estimation methods using BM with drift have appeared, almost none of the previous
models have explicitly considered the nonlinearity of the underlying degradation
process without manipulating the degradation data. However, there is the exception
of the work of Tseng and Peng [55]. In [55], Tseng and Peng addressed this problem
using a stochastic differential equation for degradation modeling of LEDs with the
restrictive assumption that the ratio between the expectation and the variance of the
derivative of the degradation process was a constant.We note that such an assumption
is difficult to justify in practice. Therefore, we can state that there are issues and
challenges remaining to be solved.

In summary, the literature on RUL estimation based on BM with drift has treated
only simple structures (linear or linearized by some kind of transformation on the
degradation data, as discussed earlier). Nonlinearity has not been directly considered
in the literature. In the next section, we will give two practical examples to show the
necessity of incorporating a nonlinear structure into a degradation process model.
Because of the nonlinearity introduced, the exact closed form of the PDF of the RUL
does not exist, and we develop an approximate closed form under a mild assumption.
To our knowledge, this chapter is the first to consider such nonlinearity with a closed
form for RUL estimation based on BM with drift in the context of degradation
modeling without using restrictive assumptions and data transformations. We start
first with the motivating examples and RUL modeling principle.

7.3 Motivating Examples and RUL Modeling Principle

Example 1:Drift coefficient in an inertial navigation platform. The inertial platform
is a key component in the inertial navigation systems in weapon systems and space
equipment. Its operating state has a direct influence on navigation precision. The
sensors fixed in an inertial platform mainly include three gyros and three accelerom-
eters, which measure angular velocity and linear acceleration, respectively. Statis-
tical analysis shows that almost 70% of failures of inertial platforms result from
gyroscopic drift. In our case, the gyro fixed on an inertial platform is a mechanical
structure having two degrees of freedom from the driver and sense axis (see [56,
57] for a general description of inertial navigation platforms and gyros). When the
inertial platform is operating, the wheels of gyros rotate at very high speeds and can
lead to rotation axis wear and finally result in the gyros’ drift. With the accumulation
of wear, the drift degrades and finally results in the failure of gyros. As such, the drift
of gyros is used as a performance indicator to evaluate the health condition of an
inertial platform. In our study, we only take the drift degradation measurement along
the sense axis for illustrative purposes, since this variable plays a dominant role in
the assessment of gyro degradation. The degradation data, including five tested items
and nine measurements for each item, were obtained from inertial platforms’ preci-
sion tests, the conditions which were similar to a field setting. The data are shown in
Table7.1 and are also shown graphically in Fig. 7.1.We can observe clearly nonlinear
characteristics in drift degradation in Fig. 7.1.
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Table 7.1 Drift degradation data from an inertial platform

Cm time (h) Gyroscopic drift (◦/h)
#1 #2 #3 #4 #5

2.5 0.050 7 0.130 0 0.013 5 0.105 2 0.092 8

5.0 0.178 9 0.255 4 0.030 9 0.199 6 0.263 3

7.5 0.205 9 0.315 3 0.007 7 0.292 7 0.301 0

10.0 0.254 8 0.396 6 0.151 0 0.306 0 0.351 5

12.5 0.311 7 0.242 4 0.116 2 0.286 0 0.281 8

15.0 0.523 6 0.347 3 0.023 7 0.291 8 0.437 5

17.5 0.611 4 0.499 4 0.268 1 0.354 0 0.335 7

20.0 0.661 6 0.710 5 0.493 4 0.432 6 0.441 3

22.5 1.816 6 2.639 9 0.651 3 0.504 2 0.815 7
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Fig. 7.1 Drift degradation path of gyros

Example 2:Fatigue crack length in 2017-T4 aluminumalloy. The 2017-T4 aluminum
alloy is a commonmetallic material used in aircraft [58]. The quality of suchmaterial
is assessed by the length of fatigue cracks.When the length of a fatigue crack is equal
to or more than a predefined threshold level of 6mm, a structuremade of this material
is considered to be in a very critical state and is defined as failed. The obtained data
represent crack length propagation in four test specimens of 2017-T4 aluminum
alloy under a stress level of 200MPa, which simulates actual operating conditions.
For each item, the fatigue crack length is recorded per 0.1 million cycles until the
end of the experiment. During testing, ten crack levels were recorded for each item.
The data are given in Table7.2 and shown graphically in Fig. 7.2. Similarly, we can
see that nonlinearity exists in the degradation process of 2017-T4 aluminum alloy.
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Table 7.2 A2017-T4 aluminum alloy fatigue crack data

Rotating cycle
(×105)

Fatigue crack length (mm)

#1 #2 #3 #4

1.5 0.04 0.34 0.32 0.38

1.6 0.32 0.40 0.40 0.50

1.7 0.40 0.58 0.50 0.60

1.8 0.48 0.80 0.70 0.75

1.9 0.50 1.20 1.25 1.10

2.0 1.80 1.80 1.40 1.25

2.1 2.00 2.80 2.00 1.50

2.2 2.60 2.40 3.30 2.00

2.3 5.00 3.40 4.70 3.00

2.4 6.00 7.00 5.60 6.80
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Fig. 7.2 Degradation measures of A2017-T4 fatigue crack growth data

From the reasons given in Sects. 7.1 and 7.3, and further motivated by the above
practical examples, it is natural to model both fatigue crack length and drift degrada-
tion as a stochastic process with a nonlinear path, since this can capture the dynamics
of the degradation process and lead to a better understanding of the nature of the fail-
ure event.

Let X (t) denote the degradation at time t . Then,

X (t) = X (0) +
∫ t

0
μ(t; θ)dt + σB B(t), (7.1)
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where the degradation process X (t) is driven by a standard Brownian motion B(t)
with a nonlinear drift ofμ(t; θ). In Eq. (7.1),μ(t; θ) and σB are the drift and diffusion
coefficients, respectively; μ(t; θ)is a nonlinear function with t and parameter vector
θ . Equation (7.1) is presumed to satisfy the regularity conditions (in Ito’s sense) that
guarantee a weakly unique global solution of Eq. (7.1) [59]. Clearly, if μ(t; θ) = μ,
Eq. (7.1) becomes the conventional linear drifted model in [9, 47, 53].

Considering that each item possibly experiences different sources of variations
during its operation, for a degradation model to be realistic, it is more appropriate
to incorporate item-to-item variability in the degradation process. As such, we treat
the parameter vector θ to be a function of two parameters: θ = (a, b), where a is
a random effect representing between-item variation, and b is a fixed effect that is
common to all items. For simplicity, we assume that θ and B(t) are s-independent and
that a follows N

(
μa,Σ a

)
. The ideas of random effects and Gaussian assumptions

are widely used in degradation modeling (see [9, 20, 21, 53, 60]). It is worth noting
that if we set σB = 0 in Eq. (7.1), then the proposed degradation model reduces to
the true degradation path model adopted in conventional random-effect regression
models [21, 60, 61].

We have established the degradation model using a general diffusion process. We
now illustrate how to estimate the RUL based on the established model. Along the
line of the work by Aalen and Gueless in [26] and Lee andWhitmore in [27], we use
the concept of the FHT to define the lifetime and then infer the RUL.

Figure7.3 illustrates theRULmodeling principle.When degradation X (t) reaches
a preset critical level w, the plant is declared to be nonusable, and, therefore, it is
natural to view the event of lifetime termination as the point when the degradation
process X (t) crosses the threshold level w for the first time. This FHT requirement
may be considered to be restrictive to some cases, since the degradation may go back
after the first hit. However, for critical equipment it is usually mandatory to put this

Fig. 7.3 Illustration of the degradation modeling and RUL estimation principle
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into practice; once the observed degradation is equal to or above the set threshold
level, the equipment must be stopped operating. From the FHT concept, the lifetime
T can be defined as

T = inf { t : X (t) ≥ w| X (0) < w} . (7.2)

Without loss of generality, we first consider the case X (0) = 0 below, and then
we proceed to the case X (t), t > 0.

As mentioned previously, the RUL can be written as Lt = {lt : T − t | T > t}
at current time t . Therefore, if fT (t) is known, then the PDF of the RUL can be
formulated as

fLt (lt ) = fT (t + lt )
/
R(t), (7.3)

where fT (t+lt ) is the PDF of the lifetime at t+lt and R(t) is the reliability function at
t [62]. Equation (7.3) is the model for a population of identical items without taking
into account the individually observed X (s), s < t , for each item. Such fLt (lt ),
particularly when t = 0, is needed at the design or testing stage before the actual
item is put into use in order to have an estimated designed life PDF or to recommend
a maintenance schedule for a future planning purpose. As for users, it should be
noted that once the observed degradations become available, then an individually
predicted RUL is required to make a dynamic decision to determine if and when
the item monitored should be repaired or replaced. In the next section, we consider
situations where t = 0 and t > 0 for X (t). Clearly, the key for estimating the RUL
is to derive the PDF of lifetime fT (t); and thus we first focus on deriving fT (t) in
the following section.

7.4 Lifetime Distribution and Parameter Estimation
of the Proposed Degradation Model

7.4.1 Derivation of the Lifetime Distribution

It is difficult to derive a general analytical form of the PDF of the FHT when μ(t; θ)

is not a constant. In the following, we develop an approximate lifetime distribution
in a closed form.

For simplicity, we begin without considering the random effects of the parameters
in the following derivations. In order to derive the lifetime distribution function, we
use Lemma 7.1 to transform the degradation process into a standard BM, which has
an explicit form of the PDF of the FHT.

Lemma 7.1 Let a diffusion process X (t) with the drift and the diffusion coefficients
μ(x, t) and σ(x, t), respectively, and c1(t) and c2(t) be arbitrary functions of the
time. Then, if and only if
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μ(x, t) = 4·∂σ(x, t)

∂x
+ [σ(x, t)]1/2

2

{
c1(t) +

∫ x

z

c2(t)σ (t, u) + ∂σ(u, t)
/
∂t

[σ(u, t)]3/2
du

}
,

(7.4)
there exists a transformation x̃ = ψ(t, x), t̃ = φ(t) that can change the original
Kolmogorov equation of the diffusion process into the Kolmogorov equation of the
standard BM. This transformation can be specified as

ψ(t, x) = (k1)
1/2 exp

{
−1

2

∫ t

t0

c2(τ )dτ

}
·
∫ x

z

1

(σ (y, t))1/2
dy−

(k1)
1/2

2

∫ t

t2

c1(τ ) exp

{
−1

2

∫ τ

t0

c2(u)du

}
dτ + k2

φ(t) = k1

∫ t

t2

exp

{
−1

2

∫ τ

t0

c2(u)du

}
dτ + k3, (7.5)

where z is an arbitrary value in the diffusion path of X (t). Here, ti ∈ [0,∞), i =
0, 1, 2 and k1, k2, k3 are arbitrary constants with the only restriction being that
k1 > 0.

The definition ofμ(x, t) and σ(x, t) can be found in [36]. The proof of Lemma 7.1
has been well documented by Ricciardi in [40] and is thus omitted here. In this way,
formulating the PDF of the FHT of X (t) crossing a constant thresholdw is equivalent
to calculating the PDF of the FHT of a standard BM crossing a transformed boundary
using x̃ and t̃ . Since t1, t2, k1, k2, k3 are arbitrary constants with the only restriction
that k1 > 0, we set k1 = 1, k2 = k3 = 0 in the following. In ourmodeling process, we
set X (0) = 0, and thus we have t0 = 0 and z = 0 as well for notation convenience.
Now, in order to facilitate deriving the PDF of the FHT of the proposed degradation
process crossing a constant threshold w, we first transform this problem into the
PDF of the FHT of a standard BM crossing a time-dependent threshold. The result
is summarized as follows:

Theorem 7.1 For the degradation process X (t), if μ(t; θ) is a continuous function
of time t in [0,∞), then the PDF of the FHT of X (t) crossing a critical level w can
be formulated as

pX (t)(w, t) = pB(t) (SB(t), t)
dφ(t)

dt
, (7.6)

where pB(t) (SB(t), t) is the PDF of the FHT of the standard BM B(t) crossing the
corresponding threshold SB(t). In such a case, the transformation can be written as

ψ(t, x) = 1
σB

(
x − ∫ t

0 μ(τ ; θ)dτ
)

, φ(t) = t

SB(t) = 1
σB

(
w − ∫ t

0 μ(τ ; θ)dτ
) . (7.7)

Proof From Lemma 7.1, we can see that the sufficient and necessary condition for
transforming the degradation process X (t) to a standard BM B(t) is that there exist
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c1(t) and c2(t), which make (7.4) hold. Since μ(x, t) = μ(t; θ), σ (x, t) = σ 2
B , we

directly have from (7.4)

μ(t; θ) = σB

2

{
c1(t) +

∫ x

0

c2(t)

σB
dy

}
. (7.8)

Clearly, for Eq. (7.7) to hold, we can set c1(t) = 2 f (t; θ)/σB, c2(t) = 0, where
f (t, θ) is a function of time and θ . Thus, we can see that the conditions of Lemma
7.1 can be satisfied.

Therefore, using the transformation x̃ and t̃ in Lemma 7.1, we can change the
original Kolmogorov equation of diffusion X (t) into the Kolmogorov equation of
a standard BM. From (7.5), such transformation can be specified as ψ(t, x) =
1
σB

(
x − ∫ t

0 μ(τ ; θ)dτ
)

, φ(t) = t . Using the transformation x̃ = ψ(t, x), t̃ = φ(t),

the boundary SB(t̃) for the standard BM can be calculated by

SB(t̃) = ψ
(
ϕ−1(t̃),w

[
ϕ−1(t̃)

])− ψ(t0, x0) = ψ (t,w)

= 1

σB

(
w −

∫ t

0
μ(τ ; θ)dτ

)
= SB (t) . (7.9)

It is noted that we use the result ψ(t0, x0) = 0, since t0 = 0 and x0 = 0, as given
previously. Then we can obtain the PDF of the FHT of the diffusion X (t) directly:

pX (t)(w, t) = pB(t)
(
SB(t̃), t̃

) dϕ(t)

dt
= pB(t) (SB [ϕ(t)] , ϕ(t))

dϕ(t)

dt

= pB(t) (SB(t), t)
dϕ(t)

dt
. (7.10)

This completes the proof of Theorem 7.1.

Remark 7.1 We note from Eq. (7.8) that there is a unique pair of functions, c1(t)
and c2(t). When the degradation process is time homogeneous, i.e., μ(t; θ) is inde-
pendent of the time variable, then c1(t) is a constant value.

It is clear that the problem under consideration can be transformed to formulate
the FHT distribution of a standard BM crossing time-varying boundary SB(t). As
mentioned in the introduction, an analytical and explicit form is more desirable than
numerical approximation in reliability and RUL estimation. To achieve this aim, we
present the following analytical approximation. First, we give one of the lemmas
presented by Durbin [63].

Lemma 7.2 For a Gaussian process W (t) with E [W (t)] = 0 and covariance func-
tion ρ(s, t) for 0 ≤ s ≤ t , where E [·] is the expectation operator, if the following
assumptions—

1. The boundary function, S(s), is continuous in 0 ≤ s < t , and is left differentiable
at t .



194 7 RUL Estimation Based on a Nonlinear Diffusion Degradation Process

2. The covariance, ρ(s, t), is positive definite and has continuous first-order par-
tial derivatives on the set {(s, t) : 0 ≤ s < t}, where appropriate left or right
derivatives are taken at s = 0, s = t .

3. lim
s→t

[
∂ρ(s,t)

∂s − ∂ρ(s,t)
∂t

]
= λt , with 0 < λt < ∞

—canbe satisfied, then thePDFof theFHTof the processW (t) crossing the boundary
S(t) can be written as

pW (t) (S(t), t) = b(t)hW (t)(t), (7.11)

where hW (t)(t) denotes the PDF of W (t) on boundary S(t). That is,

hW (t)(t) = 1√
2πρ(t, t)

exp

[
− S2(t)

2ρ(t, t)

]
, (7.12)

and b(t) can be written as

b(t) = lim
s→t

(t − s)−1EW (s)|W (t) [ I (s,W ) (S(s) − W (s))|W (t) = S(t)] , (7.13)

where I (s,W ) is an indicator defined to equal 1 if the sample path of the Gaussian
process of interest does not cross the boundary prior to time s and to equal 0 other-
wise.

Now we introduce one important assumption that will be used to prove Theorem
7.2 as follows:

Assumption 7.1 If the degradation process is hitting the threshold at a certain time
t exactly, then the probability that such a process crossed the threshold level before
time t is assumed to be negligible.

Assumption 7.1 implies that I (s,W ) ∼= 1 at the time of hitting the threshold and
is used for obtaining an approximated lifetime distribution. It requires some clari-
fication. Indeed, there will be a nonzero probability that the process will cross the
threshold before t in a strict sense since t is not the FHT. However, such a probability
should be small because of the drift. Also, the probability of the process hitting the
threshold several times should be small depending on the values of the drift and
diffusion parameters. We know that degradation data are always collected at discrete
time points, so we can only stop the item when we first observe that X (t) has crossed
w. So whether the degradation process had crossed w before is irrelevant, since the
exact FHT was not observed. There is also an additional advantage of using this
assumption, which is that the PDF of the FHT defined here is not a strict FHT by
definition, but rather a hitting time not far from it. There are concerns that using
the FHT as the time of failure is conservative. For example, Barker and Newby in
[64] argued that a system could hit the critical threshold and then return back to or
below the critical level. Hence, they defined the lifetime as the last exit time from
the threshold. Wang and Xu in [23] recently expressed a similar idea. The same idea
can also be found in the statistical control chart literature [65]. This shows that our
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formulation and consideration have a practical meaning. It is difficult to theoreti-
cally assess the accuracy of the approximation, but we present several comparisons
using the simulation after obtaining the main results to show the closeness of our
approximation and empirically validate this assumption.

Based on Lemmas 7.1 and 7.2, Theorem 7.1 and Assumption 7.1, we present the
following theorem for constructing thePDFof theFHTof our establisheddegradation
process crossing a constant threshold w.

Theorem 7.2 For the degradation process X (t) given by Eq. (7.1), if μ(t; θ) is a
continuous function of time t in [0,∞), then the PDF of the FHT of X (t) crossing a
constant boundary w can be approximated with an explicit form under Assumption
7.1 as follows:

pX (t)(w, t) ∼= 1√
2π t

(
SB(t)

t
+ 1

σB
μ(t; θ)

)
exp

[
− S2B(t)

2t

]
. (7.14)

Proof From Theorem 7.1 and Lemma 7.2, the PDF of the FHT of X (t) crossing a
constant threshold w can be written as

pX (t)(w, t) = pB(t) (SB(t), t)
dφ(t)

dt
= b(t)hB(t)(t)

dφ(t)

dt
, (7.15)

where hB(t)(t) denotes the PDF of the standard BM at boundary SB(t). Then from
Eqs. (7.11) and (7.12), and noting that ρ(t, t) = t for a standard BM, b(t) and hB(t)(t)
can be formulated as follows:

hB(t)(t) = 1√
2π t

exp

[
− S2B(t)

2t

]
, (7.16)

b(t) = lim
s→t

(t − s)−1E [ I (s, B) (SB(s) − B(s))| B(t) = SB(t)] . (7.17)

Under the transformation t̃ = φ(t) in Theorem7.1,we directly have t̃ = φ(t) = t .
This means that there is no timescale transformation in the process of transforming
the diffusion process X (t) into a standard BM. As a result, using Assumption 7.1,
we assumed that the probability of the transformed BM, B(t), reaching boundary
SB (t) before t , given that B(t) crossed SB (t) at time t , can be neglected; as such,
we can approximately have I (s, B) ∼= 1. Then, using the property of a standard BM
and the L’Hospital rule [66], b(t) can be formulated as

b(t) ∼= lim
s→t

(t − s)−1
E B(s)|B(t) [ (SB(s) − B(s))| B(t) = SB(t)]

= lim
s→t

SB(s) − E B(s)|B(t) [ B(s)| B(t) = SB(t)]

t − s

= lim
s→t

SB(s) − sSB(t)/t

t − s
= SB(t)

t
− dSB(t)

dt
= SB(t)

t
+ 1

σB
μ(t; θ). (7.18)
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This completes the proof of Theorem 7.2.

If the degradation is monotonic, such as the gamma processes, then a simple FHT
model using Pr(T ≤ t) = Pr(X (t) ≥ w) can be directly obtained. However, our
process is not monotonic, and Assumption A does not imply a monotonic property.
The process can hit the threshold before t or go back below the threshold after t , but
this is just assumed to be a small probability. This is consistentwith the characteristics
of diffusion processes. In this sense, our assumption is weaker than the monotonic
assumption.

Below,we consider two special cases ofμ(t; θ) and give the corresponding results
usingTheorem7.2. In addition, these resultswill be used for the examples in Sect. 7.5.
Of course, other forms of μ(t; θ) can be selected, but we only consider these two
special cases for illustrative purposes.

Corollary 7.1 Consider that the unknown parameters are fixed and that there are
no random effects among them. With the drift coefficients μ(t; θ) = abtb−1and
μ(t; θ) = ab exp(bt) corresponding to Model 1 (M1) and Model 2 (M2), respec-
tively, we can obtain two different nonlinear diffusion degradationmodels. The PDFs
of FHT under M1 and M2 can be formulated, respectively, from Eqs. (7.9) and (7.14),
as

f T |M1,θ ( t | M1, θ) ∼= w − atb(1 − b)

σB
√
2π t3

exp

{
−
(
w − atb

)2
2σ 2

Bt

}
, (7.19)

f T |M2,θ ( t | M2, θ) ∼= w − a (exp{bt} − bt exp{bt} − 1)

σB
√
2π t3

exp

{
− (w − a exp{bt} + a)2

2σ 2
Bt

}
,

(7.20)

where θ = (a, b).

In the following, the obtained results are compared with the results under the
monotone assumption.

Under the monotone assumption, the lifetime of the system can be obtained by
Pr(T ≤ t) = Pr(X (t) ≥ w). This implies that the process can only hit the threshold
once and cannot go back. However, for BM-based models, the degradation path is
not monotonic so the simple approximation as above equation cannot be used, or if
used can only be considered as a crude approximation or will yield some unexpected
results.

First, based on the monotone assumption, the lifetime distribution can be calcu-
lated as

Pr(T ≤ t) = Pr(X (t) ≥ w) = 1 − Φ

(
w − h(t; θ)

σ 2
Bt

)
, (7.21)

whereΦ (·) is the CDF of the standard normal variable, and h(t; θ) = ∫ t
0 μ(τ ; θ)dτ .

In this case, the obtained PDF fT (t) from the nonlinear model in this chapter can be
formulated as
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fT (t)= − d

dt
Φ

(
w − h(t; θ)

σ 2
Bt

)
= − 1√

2π
exp

{
− (w − h(t; θ))2

2σ 2
Bt

}
· d
dt

w − h(t; θ)√
σ 2
Bt

.

(7.22)
Since

d

dt

w − h(t; θ)√
σ 2
Bt

= 1

σB

[
0.5h(t; θ) − 0.5w

t3/2
− μ(t; θ)√

t

]
, (7.23)

we further have

fT (t) = 1

σB

√
2π

exp

{
− (w − h(t; θ))2

2σ 2
Bt

}
·
[
0.5h(t; θ) − 0.5w

t3/2
− μ(t; θ)√

t

]
.

(7.24)
Take the model M1 for an example, under the monotone assumption, following

(7.24), the estimated PDF of the lifetime is

fT (t) = 0.5w − atb(0.5 − b)

σB

√
2π t3

exp

{
− (w − atb)2

2σ 2
Bt

}
. (7.25)

When b = 1, we have

fT (t) = 0.5w + 0.5at

σB

√
2π t3

exp

{
− (w − at)2

2σ 2
Bt

}
. (7.26)

When b = 0, we have

fT (t) = 0.5w − 0.5a

σB

√
2π t3

exp

{
− (w − a)2

2σ 2
Bt

}
. (7.27)

Clearly, these results cannot be consistent with the exact results for these two
special cases. In contrast, the method in this chapter can obtain the exact result as
follows:

If b = 1, there is

f T |M1,θ ( t | M1, θ) = w

σB

√
2π t3

exp

{
− (w − at)2

2σ 2
Bt

}
. (7.28)

If b = 0, there is

f T |M1,θ ( t | M1, θ) = w − a

σB

√
2π t3

exp

{
− (w − a)2

2σ 2
Bt

}
. (7.29)

Regarding the above comparative results, we have the following remark:

Remark 7.2 In this chapter, we do not assume that degradation process is monotonic
and we just say the probability of hitting the threshold before t is small enough. This
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allows the degradation process to be non-monotonic and is consistent with the char-
acteristics of diffusion process. There are two advantages to utilize our assumption
compared with the monotonic assumption. First, in deriving the lifetime distribution,
we actually used the process information before t . Look at the following equation:

b(t) = lim
s→t

(t − s)−1 · EW (s)|W (t) [I (s,W )(S(s) − W (s))|W (t) = S(t)] .

Because there is no transformation in timescale and so the timescale in the X (t) and
the transformed process is the same. Therefore, in Eq. (7.18), using the information
before t is equivalent to use the process information of X (t) before t . However,
applying F(t) = Pr(X (t) ≥ ω) to approximate the lifetime, only the degradation
X (t) at time t is used. In this sense, the proposed model can utilize more infor-
mation. Second, from (7.19) and (7.20), f T |M1,θ ( t | M1, θ) can be reduced to the
inverse Gaussian distribution exactly when b = 1 and both f T |M1,θ ( t | M1, θ) and
f T |M2,θ ( t | M2, θ) can be reduced to the FHT distribution of the diffusion process
with zero drift when b = 0, also exactly. This is as expected since any properly
developed nonlinear model should cover a linear model as a special case. However,
if we use Pr(T ≤ t) = Pr(X (t) ≥ w) to obtain the FHT distribution for M1 and M2

as an approximation under the monotonic assumption, it has been shown without
difficulty that the obtained results cannot go back to the linear and zero drift cases
exactly. These discussions reveal the rationality of the proposed model and method.

7.4.2 Lifetime Distribution Under Random Effects

In the above derivations, we assume that there is no random effect in the model para-
meter space.However, different items have variability in their degradation paths. This
can be interpreted as the item-to-item variability. In the current literature, considering
the random effect in a parameter is a common way to characterize this variability.
For simplicity, we consider that a is the random effect representing between-item
variation and that it follows a normal distribution with mean μa and variance σ 2

a ,
while b is the fixed effect and common to all items. In order to facilitate the deriva-
tion in the case of considering the random effect in unknown parameters, we give
the following lemma:

Lemma 7.3 If Z ∼ N (μ, σ 2), and w, A, B,C ∈ R, then the following holds:

EZ

[
(w − AZ) · exp

(
− (w − BZ)2

2C

)]
=
√

C

B2σ 2 + C

(
w − A

Bσ 2w + μC

B2σ 2 + C

)

× exp

(
− (w − Bμ)2

2
(
B2σ 2 + C

)
)

. (7.30)
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Based on Theorem 7.3, we can obtain the PDF of the FHT by the law of total
probability. The main results are summarized in the following corollary:

Corollary 7.2 If b is fixed and a ∼ N (μa, σ
2
a ), the PDFs of the FHT of M1 and M2

can be formulated as

f T |M1 ( t | M1) ∼= 1√
2π t3

(
σ 2
a t

2b−1 + σ 2
B

)
(
w − (tb − btb)

wσ 2
a t

b−1 + μaσ
2
B

σ 2
a t

2b−1 + σ 2
B

)
×

exp

{
−

(
w − μatb

)2
2t
(
σ 2
a t

2b−1 + σ 2
B

)
}

, (7.31)

f T |M2 ( t | M2) ∼= 1√
2π t2

(
σ 2
a γ (t)2 + σ 2

Bt
)
(
w − β(t)

wσ 2
a γ (t) + μaσ

2
Bt

σ 2
a γ (t)2 + σ 2

Bt

)
×

exp

{
− (w − μaγ (t))2

2
(
σ 2
a γ (t)2 + σ 2

Bt
)
}

, (7.32)

with γ (t) = exp(bt) − 1, β(t) = exp(bt) − bt exp(bt) − 1.

Proof For M1, from Corollary 7.1 and using the law of total probability, we obtain

f T |M1 ( t | M1) = 1

σB

√
2π t3

Ea

{(
w − atb(1 − b)

)
exp

[
−(w − atb

)2/
2σ 2

Bt
]}

.

(7.33)

Let A = tb(1 − b), B = tb,C = σ 2
Bt ; the result can be obtained straightforwardly

using Theorem 7.3.
The proof for M2 is similar and is thus omitted. It is noted that the model in [53]

can be incorporated into our modeling framework when b = 1 for M1.

In order to check the appropriateness of Assumption 7.1 and the approximation
accuracy of our proposed models, we develop an FHT simulation algorithm to gen-
erate the FHT from {X (t), t ≥ 0} defined as Eq.7.1) to compare with the PDF of the
FHT from our model. The fundamental principle of this simulation algorithm is that
we can approximate {X (t), t ≥ 0}with the following so-called Euler approximation
[59, 70]

X(k+1)Δt = XkΔt + μ(kΔt; θ)Δt + σBY
√

Δt,

where Y ∼ N (0, 1) and Δt is the discretization step.
If parameter θ in the above equation is unknown, we should first use a parameter

estimation algorithm to estimate θ . For simplicity, but without loss of generality, we
assume that the parameter set θ or its distribution is known in our simulation. There-
fore, according to the definition of the FHT, we present an algorithm for simulating
the FHT as follows:
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Algorithm 7.1 (FHT simulation algorithm)
Step1: Initialize the number of samplingpathsM , discretization stepΔt , threshold

w, and initial state X0.
Step 2: Launch the mth sampling path from the initial setting in Step 1 and let

k = 0.
Step 3: At time instant kΔt for the mth sampling path, sample random numbers

θ and Y from its distribution, respectively.
Step 4: Calculate X (m)

(k+1)Δt using a Euler approximation from X (m)
kΔt . If X

(m)

(k+1)Δt ≥
w, the FHT of themth sampling path can be calculated by T (m) = (k+1)Δt , themth

sampling path is terminated. As such, setm = m+1 and return to Step 2. Otherwise,
set k = k + 1 and return to Step 3 to continue the mth sampling path until condition
X (m)

(k+1)Δt ≥ w is satisfied and T (m) is obtained.
Step 5: Repeat Steps 2–4 until M FHTs are simulated, i.e., T = {

T (1), T (2),

. . . T (M)
}
.

As an illustration, we consider a diffusion process with dX (t) = 1.5at1/2dt +
σBdB(t), where a ∼ N (1, 0.001). In order to start our simulation algorithm, we
set the threshold w = 2.5, initial state X0 = 0, simulation sample path number
M = 10000, and discretization step Δt = 0.01. Since σB has a dominant role for
governing the process uncertainty, we give three different cases for σB to compare
our results with the simulated FHTs, i.e., 1) Case 1− − −σB has a small value such
as σB = 0.05; 2) Case 2− − −σB has a moderate value such as σB = 0.2; 3)
Case 3− − −σB has a relatively large value such as σB = 2. The main results are
summarized in Fig. 7.4.

As shown in Fig. 7.4, it is obvious that our method can generate an accurate
approximation of the PDF of the FHT of the given process. It should be noted that
simulated FHTs are the realizations of the random FHT, so when the sample size is
large, the histograms approach the true PDF of the FHT. Therefore, from the above
comparisons, they provide evidence that the approximate method presented in this
chapter is satisfactory. This empirically validates our Assumption 7.1.

It can be seen that the correspondence between the histograms generated via
simulations and the PDF curves produced by our models are very close in Appendix-
B. Of course, such a simulation can be used to generate an empirical PDF of the
FHT, but our method can obtain an explicit parametric form of the estimated FHT,
which is desired for online realization and real-time engineering applications.

7.4.3 The Distribution of the RUL Estimation

Now we proceed to our main aim, which is the estimation of the RUL at a particular
point of time ti , which may be the i th monitoring point from the starting time. It
is not a straightforward transformation of w by w − X (ti ), so we present another
theorem as follow:
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Fig. 7.4 Comparison of the simulated FHT and our obtained explicit result

Theorem 7.3 Under the same conditions as inCorollary 7.2, the PDFs of the RULof
M1 and M2 can be formulated at time ti with the available degradation measurement
X (ti ) as

f Li |xi ,M1 ( li | xi , M1) ∼= 1√
2πl2i

(
σ 2
a η(li )2 + σ 2

Bli
) exp

{
− (wi − μaη(li ))

2

2
(
σ 2
a η(li )2 + σ 2

Bli
)
}

×
(
wi − (

η(li ) − bli (li + ti )
b−1
) σ 2

a η(li )wi + μaσ
2
Bli

σ 2
a η(li )2 + σ 2

Bli

)
,

(7.34)

with η(lti ) = (lti + ti )b − tbi , wti = w − X (ti ), and

f Li |xi ,M2 ( li | xi , M2) ∼= 1√
2πl2i

(
σ 2
a γ (li )2 + σ 2

Bli
) exp

{
− (wi − μaγ (li ))

2

2
(
σ 2
a γ (li )2 + σ 2

Bli
)
}

×
(
wi − β(li )

σ 2
a wiγ (lti ) + μaσ

2
Bli

σ 2
a γ (li )2 + σ 2

Bli

)
, (7.35)

with γ (lti ) = exp
(
b(lti + ti )

)− exp (bti ), and β(lti ) = (1 − blti ) exp
(
b(lti + ti )

)−
exp (bti ).
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Proof We only prove the case for M1; the proof for M2 is similar and thus is omitted.
Since we observe X (ti ) at ti ; then for t ≥ ti , the degradation process can be written
as X (t) = X (ti ) + a(tb − tbi ) + σB B(t − ti ). In such a case, the residual t − ti
corresponds to the realization of the RUL at time ti if t is the FHT of {X (t), t ≥ ti }.
Having this in mind, we take the transformation lti = t − ti with lti ≥ 0, and then
the process {X (t), t ≥ ti } can be transformed into

X (lti + ti ) − X (ti ) = a
(
(lti + ti )

b − tbi
)+ σB B(lti ),with lti ≥ 0. (7.36)

As a result, the RUL at time ti is equal to the FHT of the process
{
Y (lti ), lti ≥ 0

}
crossing the threshold wti = w − X (ti ), where Y (lti ) = X (lti + ti ) − X (ti ) and
Y (0) = 0. That is to say,

Y (lti ) = a
(
(lti + ti )

b − tbi
)+ σB B(lti ).

It is easy to verify that
{
Y (lti ), lti ≥ 0

}
satisfies all the conditions of Theorems 7.1,

7.2 and Lemma 7.2; so we directly have μ(lti ; θ) = ab
(
lti + ti

)b−1
and SB(lti ) =

1
σB

[
wti − a

(
(lti + ti )b − tbi

)]
. Similar to the deriving process of Corollary 7.2, we

can obtain the PDF of the RUL of M1, as summarized in (7.34) using the results of
Theorems 7.2 and 7.3 after some complicated manipulations.

For parameter estimation, the usual MLE approach can be used to estimate the
unknown parameters. In the following, we only consider M1 and M2 to show how to
estimate the unknown parameters from the available degradation data.

7.5 Parameters Estimation

We now present a parameter estimation algorithm for the degradation model based
on M1 and M2 in order to implement the derived models. We assume two cases here:
one is that all items are measured at the same time, and the other is that the items are
measured at different time points. The detailed presentations are summarized below.

In order to achieve parameter estimation, we assume that there are N tested items,
and the degradation measurements of the nthitem are available at time tn,1, . . . , tn,mn ,
wheremn denotes the available number of degradationmeasurements of the nth item,
n = 1, . . . , N . Therefore, the sample path of the nth item at the j th time point tn, j

is, from Eq. (7.1), given by

Xn(tn, j ) = ϕ(tn, j )an + σB B(tn, j ), (7.37)

where j = 1, . . . ,mn and an are s-independent and identically distributed following
N (μa, σ

2
a ), as in Corollary 7.2.

For simplicity, we define ϕ(t) as ϕ(t) = tb and ϕ(t) = exp(bt) − 1 for
M1 and M2, respectively, and let T n = (

tn,1, . . . , tn,mn

)′
, Tn, j = ϕ(tn, j ), Xn =
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(
xn(tn,1), . . . , xn(tn,mn )

)′
, where (·)′ denotes the vector transposition, and X denotes

all the degradation data, consisting of Xn, n = 1, . . . , N . According to Eq. (7.37)
and the independent assumption of BM, Xn follows a multivariate normal with mean
and variance as follows:

μ̃n = μaT n, Σn = Ωn + σ 2
a T nT ′

n, (7.38)

where

Qn =

⎡
⎢⎢⎢⎣
tn,1 tn,1 · · · tn,1

tn,1 tn,2 · · · tn,2
...

...
...

...

tn,1 tn,2 · · · tn,mn

⎤
⎥⎥⎥⎦ , Ωn = σ 2

B Qn. (7.39)

Due to the independent assumption of the degradation measurements of different
items, the log-likelihood function over parameter set Θ = (

μa, σ
2
a , σ 2

B, b
)T

can be
written as

�(Θ |X ) = − ln(2π)
∑N

n=1
mn − 1

2

∑N

n=1
ln |Σn| (7.40)

− 1

2

∑N

n=1
(Xn − μaT n)

′ Σ−1
n (Xn − μaT n),

where
|Σn| = |Ωn|

(
1 + σ 2

a T
′
nΩ

−1
n T n

)
, (7.41)

Σ−1
n = Ω−1

n − σ 2
a

1 + σ 2
a T

′
nΩ

−1
n T n

Ω−1
n T nT ′

nΩ
−1
n . (7.42)

Taking the first partial derivative of the log-likelihood function of Eq. (7.40) with
respect to μa, σa gives

∂� (Θ| X)

∂μa
=
∑N

n=1
T ′

nΣ
−1
n Xn − μa

∑N

n=1
T ′

nΣ
−1
n T n, (7.43)

∂� (Θ| X)

∂σa
= −

∑N

n=1

σaT ′
nΩ

−1
n T n

1 + σ 2
a T

′
nΩ

−1
n T n

+

σa
∑N

n=1 (Xn − μaT n)
′ Ω−1

n T nT ′
nΩ

−1
n (Xn − μaT n)(

1 + σ 2
a T

′
nΩ

−1T n

)2 . (7.44)

Case 1: Degradation measurements are available for all paths at the same time,
and the number of measurements of each item is the same, i.e., mn is a constant for
all items and tn, j = tl, j for n, l = 1, . . . , N .
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Along the line of the work presented in [53], the subscript of T n,Ωn,Σn in Eqs.
(7.38)–(7.44) can be removed. Thus, using Eqs. (7.41)–(7.44) can be reduced to

∂� (Θ| X)

∂μa
=
∑N

n=1 T
′Ω−1Xn − NμaT ′Ω−1T

1 + σ 2
a T

′Ω−1T
, (7.45)

∂� (Θ| X)

∂σa
= − NσaT ′Ω−1T

1 + σ 2
a T

′Ω−1T
+ σa

∑N
n=1 (Xn − μaT )′ Ω−1TT ′Ω−1

(Xn − μaT )(
1 + σ 2

a T
′Ω−1T

)2 .

(7.46)

Then, for specific values of σ 2
B, b, and setting these two derivatives to zero, the

results of MLE for μa, σ
2
a can be expressed as

μ̂a =
∑N

n=1 T
′Ω−1Xn

NT ′Ω−1T
, (7.47)

σ̂a =

⎧⎪⎨
⎪⎩

1

N
(
T ′Ω−1T

)2
∑N

n=1
(Xn − μ̂aT )′Ω−1TT ′Ω−1

(Xn − μ̂aT ) − 1

T ′Ω−1T

⎫⎪⎬
⎪⎭

1/2

.

(7.48)

Further, the profile likelihood function for σB, b in terms of estimated μa and σ 2
a

can be written as

�(σB, b |X, μ̂a, σ̂a) = − Nm

2
ln(2π) − N

2
− N

2
ln |Ω| −

1

2

⎧⎪⎨
⎪⎩
∑N

n=1
X ′

nΩ
−1Xn −

∑N
n=1

(
T ′Ω−1Xn

)2
T ′Ω−1T

⎫⎪⎬
⎪⎭−

N

2
ln

⎧⎪⎨
⎪⎩
∑N

n=1

(
T ′Ω−1Xn

)2
NT ′Ω−1T

−
(∑N

n=1 T
′Ω−1Xn

)2
N 2T ′Ω−1T

⎫⎪⎬
⎪⎭ .

(7.49)

The MLE of σB, b can be obtained by maximizing the profile log-likelihood
function in Eq. (7.49) through a two-dimensional search. Then, substituting σB, b
into Eqs. (7.47) and (7.48), we can obtain the MLE for μa, σ

2
a accordingly.

Case 2: Degradation measurements are available for all paths at different times
with different numbers of measurements for each item.

It is clear that Eq. (7.44)may not have an explicit solution through setting the right-
hand side of Eq. (7.44) to 0. Thus, for the specific value of σa, σB, b, and setting the
first derivatives of Eq. (7.40) with respect to μa to zero, the result of MLE for μa can
be expressed as

μ̂a =
∑N

n=1 T
′
nΣ

−1
n Xn∑N

n=1 T
′
nΣ

−1
n T n

. (7.50)
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Then the profile log-likelihood function of σa, σB , and b in terms of estimated μa

can be written as

�(σa, σB, b |X, μ̂a) = − ln(2π)

2

∑N

n=1
mn − 1

2

∑N

n=1
ln |Σn|−

1

2

{∑N

n=1
X ′

nΣ
−1
n Xn − 2

∑N
n=1 T

′
nΣ

−1
n Xn∑N

n=1 T
′
nΣ

−1
n T n

∑N

n=1
T ′

nΣ
−1
n Xn

+
(∑N

n=1 T
′
nΣ

−1
n Xn∑N

n=1 T
′
nΣ

−1
n T n

)2∑N

n=1
T ′

nΣ
−1
n T n

⎫⎬
⎭ . (7.51)

The MLE of σa, σB, b, can be obtained by maximizing the profile log-likelihood
function in Eq. (7.51) through a three-dimensional search. In this chapter, we use
the MATLAB function “fminsearch” for this aim. The function “fminsearch” is a
MATLAB function formultidimensional searching using the simplex searchmethod;
details can be found in [67]. Now, substituting σa, σB, b into Eq. (7.50), we obtain
the MLE for μa .

7.6 Examples of the Applications of the Models

In this section, we illustrate three real-data examples: laser data used in [53, 61],
drift degradation data from the INS, and fatigue crack data for 2017-T4 aluminum
alloy, as shown in Sect. 7.3. The data analysis was performed using MATLAB.

To compare the fitting of the proposed models, the Akaike information criterion
(AIC) [68], and overall mean squared errors (MSEs) of the fitted model compared
with the empirical distribution obtained directly from the data for each point in
tn,1, . . . , tn,mn were both used. AIC balances the log-likelihood with the number of
parameters estimated to overcome the problem of overparameterization. The AIC is
calculated

AIC = −2(max �) + 2p, (7.52)

where p is the number of estimated model parameters and max � is the maximized
likelihood.

It is noted, however, that MSE directly assesses the fit to the data, so it is another
useful measure of goodness of fit [49], though it was acknowledged that AIC is
frequently used in engineering and statistical literature to give a guideline for model
selection [32, 50]. Let F̂(tn, j , Θ̂) denote the estimated value of the CDF of the
lifetime at time tn, j for the nth item with the MLE of the parameters, Θ̂ , F̃(tn, j )

denote the empirical CDF value at time tn, j for the nth item. This value can be
estimated by the median rank method, due to Wilk and Gnanadesikan [69] then we
have
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MSE = 1

N

∑N

n=1

1

mn

∑mn

j=1

(
F̂(tn, j , Θ̂) − F̃(tn, j )

)2
. (7.53)

In both criteria, the smallest AIC and MSE values correspond to the best fitting
accuracy, and thus they can serve as criteria for model selection.

7.6.1 Laser Data

First, we use the laser data in [61] to compare our methods with the work of Peng
and Tseng in [53], in which BM with drift was used for modeling the degradation.
The random effect in the drift coefficient was considered as well. We chose their
model as a reference for comparison primarily because it is a relatively general one
in the literature of BM with drift for degradation modeling. We refer to the model
presented by Peng and Tseng in [53] as M0 below. A detailed data description can be
found in [61]. Since the data show a clearly linear path, our objective is to show that
our models are more general and can fit this linear data set well. Similar to [53], we
set the threshold as w = 10. Then, under M0, M1, and M2 separately, we obtain the
MLE of the unknown parameters in these models based on the method presented in
Sect. 7.4.2. For comparison, we summarize the corresponding estimation results of
parameters, the log-likelihood function value (log-LF), and the mean time to failure
(MTTF), and we calculate the AIC and MSE from the fitted models (see Table7.3).

From Table7.3, we can see that our resulting log-LF and MTTF estimations are
slightly different from the results of M0. The model M0 displays a marginally better
fitting than models M1 and M2 in terms of the log-LF. This better performance
comes from the linear nature of the laser degradation data. In addition, for M1, we
have b = 1.0178. Obviously, b approaches 1 in model M1. This shows that our
models can reduce to model M0 if the data is linear, which validates our statement
that our models are more general, and model M0 is a special case of our models in
the linear case. There are marginal differences among AICs, but in terms of MSE,

Table 7.3 Comparisons of three degradation models with laser data

M0 M1 M2

μa 0.002 036 6 0.001 757 2 132.36

σa 0.000 421 48 0.000 360 96 27.144

b – 1.017 8 1.493 5e-5

σB 0.010 115 5 0.010 899 2.763 0

log-LF 65.858 5 65.780 2 65.615 4

MTTF 4912.4 4934.2 4921.4

AIC –125.717 0 –123.560 4 –123.230 8

MSE×10−3 2.4 0.032 34 0.283 12
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Fig. 7.6 Comparison of the PDFs of the FHT under M0, M1, and M2 with laser data at time zero

M1 and M2 show a significant improvement compared with model M0. It is difficult
to prove the uniqueness of the MLE in this case, but we draw a contour plot with a
3-D perspective surface forM1, as shown in Fig. 7.5, which empirically demonstrates
that the profile likelihood function is convex and the MLE is unique in this case. For
the following examples, similar results can be obtained but are not shown here due
to the limited space. It is noted that “fminsearch” is stable in all cases tested.

Correspondingly, we obtain the PDFs of lifetime at time 0 for M0, M1, and M2,
respectively, as shown in Fig. 7.6.



208 7 RUL Estimation Based on a Nonlinear Diffusion Degradation Process

0
2000

4000
6000

8000

0
1000

2000
3000

4000
0

1

2

3

4
x 10−3

the RUL (hours)

Experimental result with M0

the monitored time (hours)

P
D

F 
of

 th
e 

R
U

L

The estimated mean RUL

(a) M0

0
2000

4000
6000

8000

0
1000

2000
3000

4000
0

1

2

3

4
x 10−3

the RUL (hours)

Experimental result with M1

the monitored time (hours)

P
D

F 
of

 th
e 

R
U

L

The estimated mean RUL

(b) M1

0
2000

4000
6000

8000

0
1000

2000
3000

4000
0

1

2

3

4
x 10−3

the RUL (hours)

Experimental result with M2

the monitored time (hours)

P
D

F 
of

 th
e 

R
U

L

The estimated mean RUL

(c) M2

Fig. 7.7 Comparison of the PDFs and means of the RULs under M0, M1, and M2 with the laser
data (the observed RULs are marked with ∗)

From Fig. 7.6 we can see that the PDFs of the estimated lifetime for M0, M1, and
M2 are almost the same and their differences are trivial. In order to illustrate the
usefulness of our method in RUL estimation, we select the 2nd sample in the laser
data set to show the estimated RUL curves from M0, M1, and M2 at each measuring
point, see Fig. 7.7.

Figure7.7 shows that the differences of the PDFs of the RULs among these three
models are small visually. This, in turn, implies that our methods provide at least as
good a fit as the linear method for this case study.

7.6.2 Drift Degradation Data of INS

The gyroscopes used in our example are very expensive, and therefore only limited
tests canbeperformed to obtain the degradationdata. Further, because of the influence
of the gyroscope’s drift on the precision of a navigation system, once the observed
drift value is beyond a preset threshold, it must be replaced by a new one to maintain
the precision of the INS. In our experiment, the threshold is set as 0.6(◦/h). In
our experiment, the drift data are collected automatically, and the failure times are
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Table 7.4 Comparisons of three degradation models with drift degradation data of INS

M0 M1 M2

μa 0.055 705 2.938 6e-25 9.335 8e-9

σa 0.024 954 2.732 9e-25 8.667 1e-9

b – 18.088 0.814 82

σB 0.202 89 0.065 709 3 0.065 746

log-LF –13.898 28.376 28.540

MTTF 13.401 4 23.744 22.557

AIC 33.796 0 –48.752 0 –49.080 0

MSE×10−3 0.325 2 0.006 2 0.005 5
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Fig. 7.8 Comparison of the PDFs of the lifetime under M0, M1, and M2 with gyroscope drift data

recorded as the times that the observed values cross over the threshold. After the
experiment, theMTTF is about 21.5h. The drift data of the four gyroscopes are shown
in Table7.2. Using the parameter estimation method, we obtain the corresponding
estimation results of the parameters, as shown in Table7.4. For comparison, we also
summarize the estimated log-LF, the MTTF, the AIC, and MSE in Table7.4.

As shown in Table7.4, the estimated values of b in M1 and M2 clearly confirm
the nonlinear characteristics. As in the fatigue crack data case, Table7.4 shows that
our models clearly outperform model M0 in terms of log-LF, MTTF, and the AIC
and MSE. Similar to the previous two studies, the PDFs of the lifetimes of M0, M1,
and M2 at time zero are shown in Fig. 7.8 for comparison.

Since the degradation paths of the gyroscopes’ drifts are nonlinear, as illustrated in
Fig. 7.1, it is natural that models M1 and M2 should achieve a better fit of the PDFs of
the lifetimes and the associated PDFs of RULs. Compared to M0, the uncertainty in
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Fig. 7.9 Comparison of the PDFs of the RULs under M0, M1, and M2 with drift degradation data
from INS

the estimated PDFs of the lifetimes under M1 and M2 is smaller, as seen in Fig. 7.8.
Also, the location of the lifetime distribution is not far from the observed MTTF.
Therefore, the validity of the proposed methods is further demonstrated.

We now use an individual item to test our obtained models and demonstrate their
results in RUL estimation at run time. We select the degradation data of the 4th item
in this data set, as shown in Table7.1, to show the RUL estimation results under M0,
M1, and M2, respectively, at different measuring points based on actual observed
degradation data. According to Theorem7.3, the corresponding PDFs of the RULs,
the estimatedmeanRULs, and the actual RULs for the 4th item are shown graphically
in Fig. 7.9 for comparison.

As shown inFig. 7.9, as expected,modelM0 cannot comparewith the performance
ofmodelsM1 andM2. The reason is clearly due to the nonlinearity in this case, which
further demonstrates the importance of considering the nonlinearity if the degradation
process is nonlinear. The prediction errors produced by the linear model can lead to
misleading recommendations, which could result in premature replacements in the
last two nonlinear examples.
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7.6.3 Fatigue Crack Data of 2017-T4

The obtained data are from measured crack length propagation from four test speci-
mens of 2017-T4 aluminum alloy (see Table7.2 and Fig. 7.2). For all specimens, the
crack length is measured at ten measuring points. In general, the time to cross the
threshold cannot be recorded precisely. The obtained lifetime data are often interval-
censored between two consecutive sampling points. Therefore, we use the data of the
first time when the value is observed to be over the threshold as the approximate FHT
(failure). In our experiment, the mean time to failure was about 2.4 × 105 cycles.
It should be noted that although the sample size is relatively small, the estimated
results using our methods are still satisfactory in terms of the AIC and MSE, as
shown below. We summarize the main estimation results of interest in Table7.5.

We now add one model which transforms the original data by log X (t), which is a
common way to transform nonlinear data to linear. Through this data transformation,
we treat the data as linear. M0 in [53] is used. We refer to this model as M3.

As expected, parameter b in M1 is far from 1, and this confirms a nonlinear
degradation path. In addition, Table7.4 shows that ourmodels outperformmodelsM0

and M3 in terms of log-LF, MTTF, the AIC, and MSE. Specifically, our estimations
show significantly better fit in terms of both the AIC andMSE comparedwithM0 and
M3. This case study demonstrates the better performance of the presented models
over M0 and M3 using data transformation in the case of nonlinear degradation. We
show the PDFs of lifetimes for M0, M1, M2, and M3 at time zero based on this data
set in Fig. 7.10.

It is obvious that there are significant differences among the PDFs of the lifetimes
under M0, M1, M2, and M3 with this fatigue crack data. The reason is that the fatigue
crack data used in this chapter display a clearly nonlinear pattern (see Fig. 7.2).
Therefore, model M0 has limited modeling capability in this case. This weakness
can be seen from Fig. 7.10, since the estimated PDF under M0 of the lifetime covers a
wide range so that its uncertainty is very large comparedwith the results ofmodelsM1

and M2. The estimated result of M3 is similar to M0, although the data is transformed

Table 7.5 Comparison of three degradation models with Fatigue crack data

M0 M1 M2 M3

μa 2.640 3 7.464 5e-5 0.000 149 55 0.767 16

σa 2.105 5 1.440 3e-5 3.531e-5 1.113 5

b – 12.803 4.440 2 –

σB 3.281 7 1.762 0.007 788 1.725 7

log-LF –63.252 –38.942 –14.366 –42.157

MTTF×105

(cycles)
1.168 6 2.291 2 2.394 1 0.819 2

AIC 132.504 0 85.884 0 36.732 0 90.314 0

MSE×10−3 276.0 6.6 0.157 95 390.6
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Fig. 7.10 Comparison of the PDFs of the lifetime under M0, M1, M2, and M3 at time zero with
the fatigue crack data
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Fig. 7.11 Comparison of the PDFs and mean of the RULs under M0, M1, M2, and M3 with the
fatigue crack data
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to take the nonlinearity into account. The results show that such transformation is
limited in solving the nonlinear problem in this case.

Similarly, we use the degradation data of the 3rd item in this data set to show the
estimated PDFs of the RULs under M0, M1, and M2 at run time. The correspond-
ing PDFs of the RULs, the estimated mean RULs, and the actual RULs are shown
graphically in Fig. 7.11 for comparison.

We can see clearly from Fig. 7.11 that the predictions produced by models M1

and M2 significantly outperform those of M0 and M3 both in terms of the PDFs
of the RULs and the mean RULs. In Fig. 7.11, the observed RULs are plotted by
a straight line with circle marks while the predicted mean RULs are marked with
asterisk signs. From Fig. 7.11, we observe that the estimated results of M3 are better
than M0, but they are still not satisfactory. Instead, the actual RULs and predicted
meanRULs fromM1 andM2 almost overlap. This shows the necessity of considering
the nonlinearity in degradation processes if the process is or appears to be nonlinear.

References

1. BayusBL (1998)An analysis of product lifetimes in a technologically dynamic industry.Manag
Sci 44:763–775

2. Mazhar MI, Kara S, Kaebernick H (2007) Remaining life estimation of used components in
consumer products life cycle data analysis by Weibull and artificial neural networks. J Oper
Manag 25:1184–1193

3. Pecht M (2008) Prognostics and health management of electronics. John Wiley, New Jersey
4. Altay N, GreenWGIII (2006) OR/MS research in disaster operations management. Eur J Oper

Res 175:475–493
5. Block HW, Savits TH, Singh H (2002) A criterion for burn-in that balances mean residual life

and residual variance. Oper Res 50:290–296
6. Elwany AH, Gebraeel NZ (2008) Sensor-driven prognostic models for equipment replacement

and spare parts inventory. IIE Trans 40:629–639
7. Fan CY, Chang PC, Fan PS (2010) A system dynamics modeling approach for a military

weapon maintenance supply system. Int J Prod Econ (2010). doi:10.1016/j.ijpe.2010.07.015
8. Huh WT, Janakiraman G, Muckstadt JA, Rusmevichientong P (2009) Asymptotic optimality

of order-up-to policies in lost sales inventory systems. Manag Sci 55(3):404–420
9. Jardine AKS, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics

implementing condition-based maintenance. Mech Syst Signal Process 20(7):1483–1510
10. Papakostas N, Papachatzakis P, Xanthakis V,Mourtzis D, Chryssolouris G (2010) An approach

to operational aircraft maintenance planning. Decis Support Syst 48:604–612
11. Tomlin B (2006) On the value of mitigation and contingency strategies for managing supply

chain disruption risks. Manag Sci 52(5):639–657
12. WangW (2007) A two-stage prognosis model in condition based maintenance. Eur J Oper Res

182:1177–1187
13. Maillart LM, Ivy JS, Ransom S, Diehl K (2008) Assessing dynamic breast cancer screening

policies. Oper Res 56:1411–1427
14. Ryu YU, Chandrasekaran R, Jacob V (2004) Prognosis using an isotonic prediction technique.

Manag Sci 50:777–785
15. Derman C, Lieberman GJ, Ross SM (1984) On the use of replacements to extend system life.

Oper Res 32:616–627
16. Leemis LM (1987) Variate generation for accelerated life and proportional hazards models.

Oper Res 35:892–894

http://dx.doi.org/10.1016/j.ijpe.2010.07.015


214 7 RUL Estimation Based on a Nonlinear Diffusion Degradation Process

17. Shen Y, Tang LC, Xie M (2009) A model for upside-down bathtub-shaped mean residual life
and its properties. IEEE Trans Reliab 58(3):425–431

18. Chen Z, Zheng S (2005) Lifetime distribution based degradation analysis. IEEE Trans Reliab
54:3–10

19. Escobar LA, Meeker WQ (2006) A review of accelerated test models. Stat Sci 21(4):552–577
20. Gebraeel N, Pan J (2008) Prognostic degradation models for computing and updating residual

life distributions in a time-varying environment. IEEE Trans Reliab 57(4):539–550
21. Lu CJ, Meeker WQ (1993) Using degradation measures to estimate a time-to-failure distribu-

tion. Technometrics 35(2):161–174
22. Nelson W (1990) Accelerated testing: statistical models, test plans, and data analysis. Wiley,

New York
23. Wang X, Xu D (2010) An inverse Gaussian process model for degradation data. Technometrics

52(2):188–197
24. Singpurwalla ND (1995) Survival in dynamic environments. Stat Sci 10(1):86–103
25. Cox DR (1999) Some remarks on failure-times, surrogate markers, degradation, wear, and the

quality of life. Lifetime Data Anal 5:307–314
26. Aalen OO, Gjessing HK (2001) Understanding the shape of the hazard rate: a process point of

view (with discussion). Stat Sci 16(1):1–22
27. Lee M-LT, Whitmore GA (2006) Threshold regression for survival analysis: modeling event

times by a stochastic process reaching a boundary. Stat Sci 21(4):501–513
28. Karlin S, Taylor HM (1981) A second course in stochastic processes. Academic press, Cali-

fornia
29. Lefebvre M, Aoudia DA (2011) Two-dimensional diffusion processes as models in lifetime

studies. Int J Syst Sci. doi:10.1080/00207721.2011.563870
30. Chhikara RS, Folks JL (1977) The inverse Gaussian distribution as a lifetime model. Techno-

metrics 19(4):461–468
31. Gebraeel N, Lawley MA, Li R, Ryan JK (2005) Residual-life distributions from component

degradation signals: a Bayesian approach. IIE Trans 37:543–557
32. Park C, Padgett WJ (2005) Accelerated degradation models for failure based on geometric

Brownian motion and gamma processes. Lifetime Data Anal 11(4):511–527
33. DoksumKA, Hoyland A (1992) Models for variable-stress accelerated life testing experiments

based on Wiener processes and the inverse Gaussian distribution. Technometrics 34(1):74–82
34. Wang X (2010) Wiener processes with random effects for degradation data. J Multivar Anal

101(2):340–351
35. Whitmore GA, Schenkelberg F (1997) Modeling accelerated degradation data using Wiener

diffusion with a time scale transformation. Lifetime Data Anal 3:27–45
36. CoxDR,Miller HD (1965) The theory of stochastic processes.Methuen and Company, London
37. Buonocore A, Caputo L, Pirpzzi E, Ricciardi LM (2011) The first passage time problem for

Gauss-diffusion processes: algorithmic approaches and applications to LIF neuronal model.
Methodol Comput Appl Prob 13(1):29–57

38. Mehr CB, McFadden JA (1965) Certain property of Gaussian processes and their first-passage
times. J R Stat Soc Ser B 27:505–522

39. Nardo ED, Nobile AG, Pirozzi E, Ricciardi LM (2001) A computational approach to first-
passage-time problems for Gauss-Markov processes. Adv Appl Prob 33:453–482

40. Ricciardi LM (1976) On the transformation of diffusion processes into the Wiener process. J
Math Anal Appl 54:185–199

41. Heng A, Zhang S, Tan CC, Mathew J (2009) Rotating machinery prognostics: state of the art,
challenges and opportunities. Mech Syst Signal Process 23:724–739

42. Si XS, Wang W, Hu CH, Zhou DH (2011) Remaining useful life estimation-A review on the
statistical data driven approaches. Eur J Oper Res 213(1):1–14

43. Bondesson L (1979) A general result on infinite divisibility. Ann Prob 7(6):965–979
44. Tseng ST, Tang J, Ku LH (2003) Determination of optimal burn-in parameters and residual

life for highly reliable products. Naval Res Logist 50:1–14

http://dx.doi.org/10.1080/00207721.2011.563870


References 215

45. Tseng ST, Peng CY (2004) Optimal burn-in policy by using an integrated Wiener process. IIE
Trans 36:1161–1170

46. Lee MY, Tang J (2007) A modified EM-algorithm for estimating the parameters of inverse
Gaussian distribution based on time-censored Wiener degradation data. Statistica Sinica
17:873–893

47. Tang J, Su TS (2008) Estimating failure time distribution and its parameters based on interme-
diate data from a Wiener degradation model. Naval Logist Res 55:265–276

48. Padgett WJ, Tomlinson MA (2004) Inference from accelerated degradation and failure data
based on Gaussian process models. Lifetime Data Anal 10:191–206

49. Park C, Padgett WJ (2005) New cumulative damage models for failure using stochastic
processes as initial damage. IEEE Trans Reliab 54(3):530–540

50. Park C, Padgett WJ (2006) Stochastic degradation models with several accelerating variables.
IEEE Trans Reliab 55(2):379–390

51. Joseph VR, Yu IT (2006) Reliability improvement experiments with degradation data. IEEE
Trans Reliab 55(1):149–157

52. Balka J, Desmond AF, McNicholas PD (2009) Review and implementation of cure models
based on first hitting times for Wiener processes. Lifetime Data Anal 15:147–176

53. PengCY, Tseng ST (2009)Mis-specification analysis of linear degradationmodels. IEEETrans
Reliab 58(3):444–455

54. Wang W, Carr M, Xu W, Kobbacy AKH (2011) A model for residual life prediction based on
Brownian motion with an adaptive drift. Microelectron Reliab 51(2):285–293

55. Tseng ST, Peng CY (2007) Stochastic diffusion modeling of degradation data. J Data Sci
5:315–333

56. Si XS, Hu CH, Yang JB, Zhou ZJ (2011) A new prediction model based on belief rule base for
system’s behavior prediction. IEEE Trans Fuzzy Syst. doi:10.1109/TFUZZ.2011.2130527

57. Woodman OJ (2007) An introduction to inertial navigation, Technical report, Published by the
University of Cambridge Computer Laboratory, http://www.cl.cam.ac.uk/techreport/

58. Kharoufeh JP, Cox SM (2005) Stochastic models for degradation-based reliability. IIE Trans
37:533–542

59. Kloeden P, Platen E (1995) Numerical solution of stochastic differential equations. Springer,
New York

60. Park JI, Bae SJ (2010) Direct prediction methods on lifetime distribution of organic light-
emitting diodes from accelerated degradation tests. IEEE Trans Reliab 59(1):74–90

61. Meeker WQ, Escobar LA (1998) Statistical methods for reliability data. Wiley, New York
62. Kalbfleisch JD, Prentice RL (2002) The statistical analysis of failure time data. Wiley, New

York
63. Durbin J (1985) The first-passage density of a continuous Gaussian process to a general bound-

ary. J Appl Prob 22:99–122
64. Barker CT, Newby MJ (2009) Optimal non-periodic inspection for a multivariate degradation

model. Reliab Eng Syst Safety 94:33–43
65. Oakland JS (2008) Stat Process Control, 6th edn. Butterworth-Heinemann, Woburn
66. Taylor AE (1952) L’Hospital’s rule. Am Math Mon 59(1):20–24
67. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the nelder-

mead simplex method in low dimensions. SIAM J Optim 9(1):112–147
68. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control

19(6):716–722
69. Wilk MB, Gnanadesikan R (1968) Probability plotting methods for the analysis data. Bio-

metrika 55(1):1–17
70. Beskos A, Papaspiliopoulos O, Roberts GO, Fearnhead P (2006) Exact and computationally

efficient likelihood-based estimation for discretely observed diffusion processes. J R Stat Assoc
Ser B 68(3):333–382

http://dx.doi.org/10.1109/TFUZZ.2011.2130527
http://www.cl.cam.ac.uk/techreport/


Chapter 8
Prognostics for Age- and State-Dependent
Nonlinear Degrading Systems

8.1 Introduction

Prognostics and health management (PHM) has been proved to be an effective
methodology for improving reliability and reducing the operation risk of techno-
logical systems via management actions [1]. As a key part of PHM, prognosis for
degrading systems has drawn much attention from both researchers and engineers
in recent years [2–6]. In particular, the remaining useful life (RUL) estimation of
systems serves as one of the most important ingredients of prognosis, and lays the
groundwork for sequential decision-making activities, such as condition basedmain-
tenance, optimal inspection, and spare part ordering.

Therefore, how to estimate theRULof systems has been attached great importance
in practice. The purpose of this chapter is to estimate the RUL for degrading systems,
with emphasis on the systems experiencing stochastic but age- and state-dependent
nonlinear deteriorating processes. We will elaborate on this issue later.

Due to limited funds and time-consuming testing processes, traditional prognostic
methods always suffer a huge problem that the failure time data of the concerned
degrading systems are absent [7–9].

On the other hand, the system deteriorates over time, inevitably resulting from
its operating load and environment impacts. In this circumstance, most failures of
systems arise from a degradation mechanism, and there are characteristics that dete-
riorate over the system operation. Examples include bearings, batteries, motor drives,
and capacitors in analog electronic circuits [10–14]. The past decade has witnessed
a growing research interest in various aspects of stochastic degradation modeling-
based prognostic methods. Si et al. in [15] provided a comprehensive review on
various degradation models for estimating the RUL of the system, including Gamma
processes [16–18], Wiener processes [19–22], inverse Gaussian processes [23, 24],
and Markovian-based models [25, 26]. All the reviewed models in [16–27] are age-
based. Specifically, the degradation level in these models is assume to be physically
dependent only on the system age, but not on the current system degradation state.
However, in many situations, it would be more appropriate to consider an age- and

© National Defense Industry Press and Springer-Verlag GmbH Germany 2017
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state-dependent degradation model so as to account for the s-dependence of the
degradation process on both the system age and state.

These age- and state-dependent degradation phenomena are frequently encoun-
tered in practice. For example, as the degradation level increases, the system degra-
dation rate might increase, and the system resistance to failure might reduce.

To our knowledge, the studies on age- and state-dependent degradation model-
ing are very limited in the literature, as opposed to a great deal of effort made to
age-dependent degradation models. The only exceptions are the works appearing in
[28–30]. Most recently, Giorgio et al. in [31, 32] made the first attempt along this
direction, and presented some Markov chain based degradation models whose tran-
sition probabilities between the process states depend on the current state and the
current age of the systemunder study. It is actuallyworth pointing out that their devel-
oped models are only suitable to represent strictly monotonic degradation processes.
However, in many industrial systems, a non-monotonic degradation process, e.g.
resulting from minor repair or reduced intensity of use, can provide a good descrip-
tion of the system’s degradation signals, including rotating bearings [33], bridge
beam degradation [20], batteries [9, 11, 34], light emitting diode (LED) lamps [35],
carbon film resistors [36, 37], etc. On the other side, in [29–32], the continuous
degradation process is approximated by a Markov chain with discrete degradation
states. This approximating process introduces many context-dependent parameters,
which might pose difficulty in applications. Together with these discussions, we can
conclude that it is still desirable to develop age- and state-dependent degradation
models for continuously degrading systems, whose degradation progression might
be non-monotonic.

Due to its favorable mathematical properties and physical interpretations, Wiener
processes have been widely adopted to characterize continuously degrading systems
with non-monotonic degradation progressions, such as the examples in [19–22]. It is
known, for complicated systems, that nonlinearity and stochasticity are two important
factors contributing to their degradation processes, and thus have to be taken into
account in stochastic degradation-modeling-based RUL estimation. However, most
works onWiener-process-basedRULestimationmethods focusedon linearmodels or
models that can bemade linear by logarithmic or timescale transformations [21]. The
research on RUL estimation using nonlinear models is still very limited. Recently, Si
et al. in [38] studied how to model the nonlinear degradation process, and presented
a more general nonlinear Wiener-process-based model for RUL estimation. Based
on this model, unlike the usually used monotonic assumption, they formulated an
analytical approximation of the RUL distribution under a mild assumption. Feng
et al. in [39] extended the above work to the case of partially observed degradation
signals.More comparisons between linearmodels and nonlinearmodels can be found
in [40–44]. It is worth noting that, even in rarely reported nonlinear cases, the current
research is still limited to the case of modeling the degradation as an age-dependent
stochastic process.

The above survey of the related works and discussions pose an interesting chal-
lenge for prognostic studies through age- and state-dependent nonlinear degradation
modeling. Still unsolved is an important and practical problem of how to achieve
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RUL estimation for age- and state-dependent nonlinear degradation processes. In
this chapter, we propose a general age- and state-dependent nonlinear degradation
model for prognostics of continuously degrading systems. In this model, we present
a diffusion process with age- and state-dependent nonlinear drift coefficients, as well
as age- and state-dependent volatility coefficients, to represent the dynamics and
nonlinearity of the degradation progression.

To estimate the RUL distribution, the proposed diffusion process is first converted
into a diffusion process with age- and state-dependent nonlinear drift but constant
volatility through a Lamperti transformation.

Further, based on awell-known time-space transformation,weobtain an analytical
approximated RUL distribution in the concept of the first passage time. To implement
the presented model, a maximum likelihood estimation (MLE) method for unknown
model parameters is presented based on closed-form approximated transition density
functions of the degradation states through the Hermite expansion method.

Overall, the key contribution of this work is investigating the RUL estimation
for age- and state-dependent nonlinear degrading systems, which to the best of our
knowledge is the first effort on this topic. As a by-product, the results for pure
age-dependent models are nested within the results obtained in this chapter. An
illustrative example is provided to show how the main results of this chapter can be
applied to a specific age- and state-dependent nonlinear degradation model. Finally,
a case study is provided by fitting the bearing degradation data from the PHM data
challenge of 2012 to the presented model [45]. Comparative results suggest the
necessity of investigating age- and state-dependent nonlinear degradation modeling
in prognostics.

The remaining parts of this chapter are organized as follows. Section8.2 describes
the problem. Section8.3 derives the main results of the RUL estimation under age-
and state-dependent nonlinear degradation models. Section8.4 presents the frame-
work of the MLE for unknown model parameters. A particular degradation model is
proposed in Sect. 8.5 for illustrative purposes. Section8.6 provides a case study for
the bearings data from the PHM data challenge of 2012 [45].

8.2 Problem Formulation

Let {X(t), t ≥ 0} denote the stochastic process describing the degradation of the
system over its operating time. In this chapter, {X(t), t ≥ 0} is modeled as a nonlinear
diffusion process.

In general, a nonlinear diffusion process can be represented in the form of a
stochastic differential equation (SDE), which is expressed as

dX(t) = μ(X(t), t; θ)dt + σ(X(t), t; θ)dB(t), (8.1)

where {B(t), t ≥ 0} is a standard Brownian motion process, μ(X(t), t; θ) is the drift
coefficient function, and σ(X(t), t; θ) is the volatility coefficient function.μ(x, t; θ),
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and σ(x, t; θ) can be arbitrary nonlinear functions with the parameter vector θ . With-
out loss of generality, we suppose t0 = 0,X(0) = 0 for simplicity throughout the
chapter.

Our model differs from existing methods for degradation modeling in that it
uses nonlinear drift coefficient functions and volatility coefficient functions depend-
ing not only on time (or age) t, but also on the system state X(t). In addition, the
presented model extends the dediffusion-process-based degradation model, one of
whose special cases is the Wiener-process-based degradation model, to a more gen-
eral situation. Particularly, (8.1) can be simplified to the age-dependent nonlinear
drifted model in [38], and a state-dependent degradation model as mentioned in [35–
37], by setting μ(x, t; θ) = μ(t; θ), σ(x, t; θ) = σB, and μ(x, t; θ) = μ(X(t); θ),
σ(x, t; θ) = σ(X(t); θ), respectively. A further simplification by letting μ(x, t; θ)

and σ(x, t; θ) be constants reduces both age-dependent and state-dependent models
to conventional linear degradation models in [29, 31, 32]. These observations reflect
the generality of the presented model.

To estimate the lifetime of the degrading system, the lifetime is usually defined
as the first time that the degradation process crosses the failure threshold.

Thus, by the concept of the first passage time (FPT), the lifetimeT of the degrading
system can be formally defined as

T := inf {t : X(t) ≥ w|X(0) < w}, (8.2)

where the probability density function (PDF) of T can be described as fT (t), and w
is a preset constant failure threshold level determined by the required performance
of a specific system (see, e.g., ISO 2372 and ISO 10816 for vibration level).

To utilize the degradation monitoring information, suppose the degradation is
inspected at somediscrete timepoints 0 = t0 < t1 < t1 < · · · < tk , and let xk = X(tk)
denote the degradation observation of the system at time tk . The set of observations
of the degradation states up to time tk is presented as Xk

0 = {x0, x1, . . . , xk}. Thus,
using the concept of the FPT, we define the RUL Lk of the system at time tk as

Lk = inf {lk > 0 : X(lk + tk) ≥ w}, (8.3)

with the PDF fLk (lk).
Based on the definition of Lk , fLk (lk) is consequently decided by the drift and

volatility coefficient functions of the degradation process, together with the failure
thresholdw, and the state of the system. Therefore, the primary goal of this chapter is
to derive the PDF fLk (lk) of the RUL under the above model formulation. The novelty
of the presented model is to allow us to take age- and state-dependent impacts into
account simultaneously to estimate theRULdistribution. This approach distinguishes
our model from the existing models that only consider the age-dependent impact on
the estimated RUL. In the following section, we provide the solution to fLk (lk) in the
presence of age- and state-dependent degradation processes.
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8.3 RUL Estimation by Degradation Modeling

To derive the estimated RUL distribution, we employ the Lamperti transformation
proposed in [46, 47] to change the stochastic process {X(t), t ≥ 0} described in
(8.1) into a stochastic process {Y(t), t ≥ 0} with unit volatility. A Larmperti trans-
formation intends to standardize the variance of a diffusion process so that it has
unit variance. The rationale of this transform is that it is achieved by Ito’s formula,
which is widely accepted and used (see, e.g., [46–48]). Besides, we suppose that
μ(x, t) and σ(x, t) are differentiable, which is the premise required to use such a
transformation. There are two advantages performing Lamperti transformation for
{X(t), t ≥ 0}. On the one hand, after such a transformation, some conclusions in [38]
can be utilized to derive an analytical approximate PDF of the RUL. On the other
hand, after performing a Lamperti transformation, the existence of the degradation
state’s closed-form approximated log-transition density expansions will facilitate the
parameters estimation of (8.1).

These issues will be shown in the following.
For the studied model (8.1), the Lamperti transformation is represented as

y = γ (x, t) =
∫ x 1

σ(w, t; θ)
dw, (8.4)

and the SDE corresponding to the transformed process {Y(t), t ≥ 0} is

dY(t) = μY (Y(t), t; θ)dt + dB(t), (8.5)

where the drift coefficient function μY (Y(t), t; θ) is obtained by Ito’s formula as

μY (Y(t), t; θ) = μ[γ −1(Y(t), t), t; θ]
σ [γ −1(Y(t), t), t; θ] − 1

2

∂σ [γ −1(Y(t), t), t; θ]
∂x

+ ∂γ [γ −1(Y(t), t), t; θ]
∂t

, (8.6)

in which γ −1(y, t) denotes the inverse function of γ (y, t).
Obviously, μY (Y(t), t; θ) is still an age- and state-dependent nonlinear function.

To guarantee that there is a unique stochastic process satisfying (8.6), it is assumed
that μY (Y(t), t; θ) satisfies the conditions given in Lemma8.1. Actually, Lemma8.1
is a particular case of the proved theory ensuring a unique solution to a general SDE
[49].

Lemma 8.1 There exists a unique stochastic process {X(t), t ≥ 0} satisfying the
SDE of

dX(t) = g(X(t), t; θ)dt + σBdB(t), (8.7)

if the following conditions hold.

(i) g(x, t; θ) is measurable about x, t, and |g(x, t; θ)| 1
2 ∈ L2

T×R.
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(ii) (Lipschitz conditions) There is a positive constant K ∈ R letting

|g(x, t; θ) − g(y, t; θ)| < K|x − y|, ∀t ∈ [0,T ],∀x, y ∈ R.

(iii) (Linear growth conditions) There is a constant C > 0 letting

|g(x, t; θ)| ≤ C(1 + |x|), ∀t ∈ [0,T ],∀x, y ∈ R.

Based on the above discussions, we conclude that, under certain conditions, a
general stochastic process {X(t), t ≥ 0} can be equivalently transformed into a kind
of stochastic process with fixed volatility such as (8.5) and (8.7). Therefore, we
mainly consider the type of stochastic degradation processes {X(t), t ≥ 0} in (8.7)
for simplicity, but without loss of generality.

Inspired by [38], to achieve the lifetime distribution under the degradation process
{X(t), t ≥ 0} in (8.7), we first change the problem calculating the PDF of the FPT
crossing a constant threshold into the problem of a standard BM crossing a time-
varying threshold. This change can be done by the well-known time-space transfor-
mation. The corresponding conditions and transformations for the presented model
(8.7) are summarized as Lemma8.2.

Lemma 8.2 The degradation process {X(t), t ≥ 0} described by (8.7) can be
changed into a standard BM {B(t̃), t̃ ≥ 0} by a time-space transformation x̃ =
Ψ (t, x), t̃ = ϕ(t), iff there exist the functions c1(t) and c2(t) of time t satisfying

c1(t) = 2g(x, t; θ) − xc2(t)

σB
, (8.8)

c2(t) = 2
∂g(x, t; θ)

∂x
. (8.9)

Then Ψ (t, x), and ϕ(t) can be written as

Ψ (x, t) = exp

[
−1

2

∫ t

0
c2(u)du

]
x

σB
− 1

2

∫ t

0
c1(τ ) exp

[
−1

2

∫ τ

0
c2(u)du

]
dτ,

ϕ(t) =
∫ t

0
exp

[
−1

2

∫ τ

0
c2(u)du

]
dτ. (8.10)

Lemma8.2 can be proved by substituting μ(x, t, θ) = f (x, t, θ) into Lemma 1 in
[38]. After this time-space transformation, the degradation process defined in (x, t)
can be described as a standard BM in (x̃, t̃).

Now, based on the transformed standard BM, the purpose to obtain the PDF of the
FPT of the degradation process in {X(t), t ≥ 0} crossing a constant critical threshold
w can be achieved through formulating the PDF of the FPT of a standard BMcrossing
a time-dependent threshold. Thus, for a degradation process {X(t), t ≥ 0} in the form
of (8.7), the PDF of lifetime T can be formulated under the time-space transformation
x̃ = Ψ (t, x) and t̃ = ϕ(t) as
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fT (t) = pB(t̃)(S(t̃), t̃)
dϕ(t)

dt
, (8.11)

where pB(t̃)(S(t̃), t̃) is the PDF of the standard BM crossing a t̃-dependent critical
level S(t̃). The corresponding transformations are S(t̃) = Ψ (w[ϕ−1(t̃)], ϕ−1(t̃)) =
Ψ (w, ϕ−1(t̃)), and t̃ = ϕ(t).

At present, through the Lamperti transformation and time-space transformation,
the lifetime distribution of the system described by an age- and state- dependent
degradation process (8.7) has been transformed into the PDF of the FPT of a standard
BM crossing a time-dependent boundary S(t̃). It is noted that an analytical form of
fT (t) is desirable for decision-making under prognostic information, especially in the
circumstance of online estimation analysis and maintenance scheduling. However,
under the sense of the FPT, it is often really difficult to derive a closed-form fT (t),
no matter what method is utilized.

Fortunately, for such a kind of diffusion with age- and state-dependent drift coef-
ficient but constant volatility coefficient, we can use the method proposed in [38]
to achieve an analytical approximation for the PDF of lifetime. To get an analyti-
cal form of the lifetime distribution, we make the same assumption as [38] that if
the degradation process is hitting the threshold at a certain time t exactly, then the
probability that such a process crossed the threshold before time t is negligible. This
assumption has been well demonstrated by recent prognostics studies in [50–52].

Together with Lemma8.2, (8.11), and the above assumption, we present the fol-
lowing theorem for constructing the PDF of the lifetime associated with the degra-
dation process (8.7).

Theorem 8.1 For the degradation process {X(t), t ≥ 0} given by (8.7), if g(x, t, θ)

is a continuous function of the time t and the state x, then the PDF of the FPT of
{X(t), t ≥ 0} crossing a constant threshold w can be approximated with an explicit
form as

fT (t) ∼= 1√
2π t̃

[
S(t̃)

t̃
− dS(t̃)

dt̃

]
exp

[
−S2(t̃)

2t̃

]
dϕ(t)

dt
(8.12)

where S(t̃) = Ψ (w, ϕ−1(t̃)) and t̃ = ϕ(t) are determined by (8.10).

The proof of Theorem8.1 is given in the Appendix.
As mentioned in the section above, (8.1) is a generalization of many degradation

models in literature. Due to the Lamperti transformation, such a generality state-
ment can also be applied to (8.7). As a result, the method calculating the lifetime
distribution in this section works in a series of cases by specifying different forms
of g(x, t, θ), and the according results for several special cases are summarized in
Table8.1.

In Table8.1, the model M1 is an age- and state-dependent nonlinear degradation
model;M2, andM4 are age-dependent nonlinear models which become linearmodels
when bT = 0, and bT = 1 respectively; and M3 is a state-dependent degradation
model. Using the obtained result in Theorem8.1, we can formulate the lifetime
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Table 8.1 Lifetime distribution estimation results of some degradation models

Model M1 M2 M3 M4

μ(x, t; θ) bXx + aTbT ebT t aT bT ebT t aX + bXx aTbT tbT−1

σ(x, t; θ) σB σB σB σB

c2(t) 2bX 0 2bX 0

c1(t)
2aT bT ebT t

σB

2aT bT ebT t

σB

2aX
σB

2aT bT tbT−1

σB

ϕ(t) 1−e−bX t

bX
t 1−e−bX t

bX
t

dϕ(t)
dt e−bX t 1 e−bX t 1

ψ(x, t; θ) xe−bX t

σB
+ aT bT [1−e(bT−bX )t ]

σB(bT−bX )
x+aT−aT ebT t

σB

(xbX+aX )e−bX t−aX
σB

x−aT tbT
σB

S(t̃) w(1−bX t̃)
σB

+
aT bT [1−(1−bX t̃)(bX−bT )/bX ]

σB(bT−bX )

w+aT−aT ebT t

σB

w(1−bX t̃)−aX t̃
σB

w−aT tbT
σB

dS(t̃)
dt̃

−wbX
σB

− aT bT (1−bX t̃)−bT /bX

σB(bT−bX )
− aT bT ebT t

σB
− aT bT ebT t

σB
− aT bT t̃bT

σB

distributions for all models in Table8.1. All the required quantities in (8.12) for
lifetime estimation are summarized in Table8.1. It is worth mentioning that the
models M1 and M2 will be used in the subsequent illustrative example and case
study.

Remark 8.1 In (8.7), if the drift coefficient function g(x, t, θ), obtained through
Lamperti transformation from (8.1), is s-independent of the degradation state, then
the time-space transformation in Lemma8.2 becomes a space-only transformation,
which is demonstrated by the results of the models M2 and M4 with c2(t) = 0 and
ϕ(t) = t in Table8.1. It is straightforward to verify that the results in Table8.1
can include current results of linear models, and age-dependent nonlinear models
as special cases. This result further shows the generality of the obtained results by
Theorem8.1. �

Remark 8.2 The results in Theorem8.1 and Table8.1 do not take into account the
individual-to-individual variability of degrading systems.

When the individual-to-individual variability is involved, we can use a popular
method of introducing some random effects in the model parameters [53]. Then, the
PDF of the lifetime can be estimated by the law of total probability. �

Until now, we have achieved the goal of calculating the lifetime distribution fT (t)
for systems with age- and state-dependent nonlinear degradation models. However,
the results in Theorem8.1 and (8.12) are obtained under the condition of t0 = 0,
X(0) = 0, and thus fail to incorporate the degradation observation of the system into
the estimated lifetime. For a practical system, a more common situation is that the
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system is monitored at time tk , and the state is then evaluated as xk = X(tk). Based
on the degradation modeling, and the observed degradation state xk , the RUL of the
system at the monitoring time tk can be estimated by the following results.

Theorem 8.2 For the degradation process described by (8.7), if the degradation
observation at tk is xk = X(tk), then the PDF of the estimated RUL at time tk equals
the FPT of the stochastic process {Y(lk), lk ≥ 0} crossing a constant threshold
wk = w−xk, where Y(lk) = X(lk+tk)−xk, and Y(0) = 0. The process {Y(lk), lk ≥ 0}
can be described by

dY(lk) = g(xk + Y(lk), (lk + tk); θ)dlk + σBdB(lk), (8.13)

and the according PDF of the RUL at tk can be approximately formulated as

fLk (lk) ∼= lk√
2π l̃k

[
S(l̃k)

l̃k
− dS(l̃k)

dl̃k

]
exp

[
−S2(l̃k)

2l̃k

]
dϕ(lk)

dlk
, (8.14)

where S(l̃k) = Ψ ∗(wk, ϕ
∗−1(l̃k)), and l̃k = ϕ∗(lk) are determined as

Ψ ∗(wk, lk) = exp

[
−1

2

∫ lk

0
c∗
2(u)du

]
wk

σB
− 1

2

∫ lk

0
c∗
1(τ ) exp

[
−1

2

∫ τ

0
c∗
2(u)du

]
dτ,

ϕ∗(lk) =
∫ lk

0
exp

[
−1

2

∫ τ

0
c∗
2(u)du

]
dτ. (8.15)

The proof of Theorem8.2 is given in the Appendix, together with the forms of
c∗
1(u) and c∗

2(u).
As observed from Theorem8.2, there are shifts in the forms of the drift and

volatility coefficient functions, which make the PDF of the RUL fLk (lk) no longer
just be a simple substitution of w by wk into fT (t). At the monitoring time tk with the
degradation state xk , applying Theorem8.2 to themodelMj , j = 1, 2, 3, 4 in Table8.1
can provide an efficient approach to calculate the PDF of the estimated RUL Lk at tk .
To distinguish the models considering the current degradation observation from the
models in Table8.1 for lifetime estimation, let M∗

j denote the corresponding model
for the process {Y(lk), lk ≥ 0} obtained from the model Mj through Theorem8.2.
The main results associated with the estimated PDF of the RUL for model M∗

j are
summarized in Table8.2.

By comparing the results in Table8.1 with those of Table8.2, we can find the
differences in models used to derive the lifetime distribution fT (t) and the PDF of
the RUL fLk (lk) at tk clearly, because the current degradation observation has been
incorporated into the estimated RUL. It is not surprising that the result for model
M∗

1 can include the results of the other three models as special cases. Actually, this
observation holds also true for several current results under linear models and age-
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Table 8.2 PDFs of the estimated RUL results for some degradation models
Model M∗

1 M∗
2 M∗

3 M∗
4

μ(y, lk ; θ) bXxk + bXy + aT ebT tk bT ebT lk aT ebT tk bT ebT lk aX + bXxk + bXy aT bT (tk + lk )bT −1

σ(y, lk ; θ) σB σB σB σB

c2(lk ) 2bX 0 2bX 0

c1(lk )
2(aT bT ebT tk ebT lk +bX xk )

σB

2aT ebT tk bT ebT lk

σB

2(aX+bX xk )
σB

2aT bT (tk+lk )bT −1

σB

ϕ(lk )
1−e−bX lk

bX
lk

1−e−bX lk

bX
lk

dϕ(lk )
dl̃k

e−bX lk 1 e−bX lk 1

ψ(y, lk ; θ) xe−bX lk

σB
+ + xk (1−e−bx lk )

σB
+

aT ebT tk bT [1−e(bT −bX )lk ]
σB(bT −bX )

x+aT ebT tk −aT ebT tk ebT lk

σB
− aX+bX xk

σB
+

(ybX+aX+bX xk )e
−bX lk

σB

xk−aT (tk+lk )bT
σB

S(l̃k )
wk (1−bX l̃k )

σB
+ bX xk l̃k

σB
+

aT ebT tk bT [1−(1−bX l̃k )
bX−bT

bX ]
σB(bT −bX )

w+aT ebT tk −aT ebT tk ebT lk

σB

wk (1−bX l̃k )−(aX+bX xk )l̃k
σB

wk−aT (tk+lk )bT
σB

dS(l̃k )
dl̃k

− wkbX
σB

+ bX xk
σB

− aT ebT tk bT (1−bX l̃k )
− bT

bX

σB(bT −bX )

− aT ebT tk bT ebT lk

σB
− wbX+aX+bX xk

σB
− aT bT (tk+lk )bT −1

σB

dependent nonlinear models because the structure of model (8.7) has a very general
form.

To end this section, we summarize the main steps deriving the RUL distribution
of the system with an age- and state-dependent degradation process.

Step 1: A general age- and state-dependent nonlinear degradation process
{X(t), t ≥ 0} is transformed into a process {Y(t), t ≥ 0} with a drift function
μY (Y(t), t; θ) and a unit volatility coefficient through Lamperti transformation.

Step 2: By the time-space transformation, {Y(t), t ≥ 0} is further transformed
into a standard BM {B(t̃), t̃ ≥ 0}.

Step 3: Under a weak assumption, we obtain an analytical approximate PDF
of the FPT of B(t̃) crossing a t̃-dependent boundary as the lifetime distribution
corresponding to {X(t), t ≥ 0}.

Step4: ThePDFof theRULat time tk is derivedbyutilizing the current degradation
observation with xk according to Theorem8.2.

By now, for a specific degradation process in the form (8.1), the lifetime distri-
bution fT (t) and the PDF of RUL fLk (lk) at the monitoring time tk are accessible by
applying Theorems8.1 and 8.2. As for the model parameters, when the degradation
observations are available, a parameter estimation procedure is needed to identify
unknown parameters in (8.1). This procedure is the focus of the next section.

8.4 Model Parameter Estimation Framework

Regarding the problem of estimating unknown parameters θ in (8.1), it is worth
noting that the observation of the degradation process is usually discrete, while
the model specification of the stochastic degradation process is continuous. Conse-
quently, a closed-form of the degradation state transition function is unavailable for
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most cases. This unavailability leads to the difficulty of directly usingmaximum like-
lihood estimation (MLE) for parameter estimation. In this chapter, to get the MLE
of unknown parameters θ , then we use the Hermite expansion method, which is
seminally proposed in [46, 54], to find a closed-form approximate transition density
function of the degradation states, and then to construct the log-likelihood function.
Due to the nature of the studied model (8.1), only the case of univariate degradation
processes is considered here for simplicity. For multivariate cases, see [48, 55] for
references.

Now, we provide a brief summary of the parameter estimation framework using
themethod of Hermite expansion proposed in [47]. First, an age- and state-dependent
degradation model in (8.1) is changed into a diffusion process (8.5) by a Lamperti
transformation. Let 	 = t − t0, and define another transformation for {Y(t), t ≥ 0}
in (8.5) as

z = y − y0√	 . (8.16)

Then, the transition density of {Y(t), t ≥ 0}, denoted by PZ(t, z|t0, y0), can be
approximated as a J-th order Hermite expansion

p(J)
Z (t, z|t0, y0) = φ(z)

J∑
j=0

η
(j)
Z (t, t0, y0)Hj(z), (8.17)

where φ(z) = 1√
2π
e−(z2)/(2), and the Hermite polynomials are a series of orthogonal

base functions defined as Hj(z) = φ(z)(−1)(dj)(dzj)φ(z). In (8.17), the coefficients
η

(j)
Z (t, t0, y0) can be obtained using the orthogonality of Hermite polynomials and

Taylor expansion, and the transition function PZ(t, z|t0, y0) is thus approximated as

p(J,K)
Y (t, y|t0, y0) = 1√	φ

(
y − y0√	

)⎧⎨
⎩

J∑
j=0

1

j!

[
K∑
i=0

	i

i! A
i
Y ◦ Hj

(
y − y0√	

)
|y=y0

]

Hj

(
y − y0√	

)}
, (8.18)

where the infinitesimal operator AY is defined by

AY ◦ f (t, y, t0, y0) = ∂f (t, y, t0, y0)

∂t
+ μY (t, y)

∂f (t, y, t0, y0)

∂y

+1

2

∂2f (t, y, t0, y0)

∂y2
. (8.19)

A general definition of the infinitesimal operator for a univariate time-
inhomogeneous diffusion process can be found in [47, 55]. In degradation mod-
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eling practice, only the observations of {X(t), t ≥ 0} are available. Based on (8.18),
we can obtain the approximate transition density of {X(t), t ≥ 0} as

p(J,K)
X (t, x|t0, x0) = 1

σ(x, t)
p(J,K)
Y (t, γ (x, t)|t0, γ (x0, t0), (8.20)

and formulate the log-likelihood �(θ |X) as

�(θ |X) =
k∑

n=1

lnPJ,K
X (tn, xn|tn−1, xn−1). (8.21)

After choosing suitable orders J and K according to the requirements for the
modeling accuracy and the complexity of calculation, we obtain the MLE θ̂ of θ

by maximizing �(θ |X) with respect to θ . As described in [55], this maximization is
relatively faster, because the simulation of many paths from the degradation process
{X(t), t ≥ 0}, which dominates many other estimation procedures for diffusion
processes, is not required here to approximate the transition density.

8.5 An Illustrative Example

To illustrate the proposed approach, we consider a new state- and age-dependent
nonlinear diffusion-process-based degradation model. This model will be applied
subsequently to the bearing degradation of the PHM data challenge of 2012 [45]. In
this model, only the drift coefficient is considered to be state- and age- dependent
for the purposes of simplicity and comparability with several existing degradation
models. The diffusion coefficient is set constant, as done in [38].

8.5.1 Degradation Model and Lifetime Estimation

Specifically, the concerned model is expressed as

dX(t) = [bXX(t) + aTbT exp (bT t)]dt + σBdB(t). (8.22)

It can be observed that the drift coefficient in (8.22) is both age- and state-
dependent, whichmakes this model different from all diffusion-process-based degra-
dation models in literature. For descriptive convenience, we represent this degrada-
tion model asM1. Accordingly, we consider its reduced version as the age-dependent
nonlinear diffusion model M2, expressed by

dX(t) = aTbTe
bT tdt + σBdB(t). (8.23)



8.5 An Illustrative Example 229

It is straightforward to find that the model M2 (8.23) is a special case of the
degradation model M1 when bX = 0. Here, bX = 0 means that the drift coefficient
is s-independent of the degradation state. Note that M2 was first proposed in [38],
and has indicated very good fitting performance in a series of degradation data, such
as fatigue growth data, laser data, and the degradation data of the inertial navigation
system. In the following, the lifetime distribution, and the RUL distribution can be
respectively derived by applying Theorems8.1 and 8.2.

Firstly, fromTheorem8.1,we can formulate the PDFof the lifetime corresponding
to the degradation process described in (8.22) as

fT |M1(t;w, θM1) = b3/2X e−bX t

σB

√
2π
(
1 − e−bX t

)3
(
w + aTbT

bT − bX
− aTb2T

(bT − bX)bX
e(bT−bX )t

+aTbT
bX

ebT t
)

× exp

⎡
⎢⎣−

(
wbXe−bX t + aT bT bX

bT−bX
(1 − e(bT−bX )t)]

)2
2(1 − e−bX t)bXσ 2

B

⎤
⎥⎦. (8.24)

Further, at a specific monitoring time tk with the degradation observation xk , the
PDF of the estimated RUL can be calculated according to Theorem8.2 as

fLk |M1 (lk;w, θM1 ) = b3/2X e−bX lk

σB

√
2π
(
1 − e−bX lk

)3
(
wk + aTbT ebT tk

bT − bX
− aTb2T e

bT tk

(bT − bX )bX
e(bT−bX )lk

+aTbT ebT (tk+lk )

bX

)

× exp

⎧⎪⎨
⎪⎩−

[
wkbXe−bX lk − xkbX (1 − e−bX lk ) + aT bT bX

bT−bX
(1 − e(bT−bX )lk )]

]2
2(1 − e−bX lk )bXσ 2

B

⎫⎪⎬
⎪⎭

(8.25)

where wk = w − xk . What should be pointed out is that, in (8.24) and (8.25), for
notation convenience, we use the formulation

b3/2X√
(1 − e−bX lk )3

=
√

bX
(1 − e−bX lk )

× bX
(1 − e−bX lk )

. (8.26)

Similarly, from Theorems8.1 and 8.2, the PDFs of the lifetime T and the RUL Lk
under model M2 can be respectively formulated as

fT |M2 (t,w; θM2 ) = w + aT + aT ebT t(bT t − 1)

σB
√
2π t3

exp

[
− (w + aT − aT ebT t)2

2σ 2
Bt

]
, (8.27)
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and

fLk |M2(lk,w; θM2) = wk + aTebT tk + aTebT (tk+lk)(bT lk − 1)

σB

√
2π l3k

exp

[
− (wk + aTebT tk − aTebT (tk+lk))2

2σ 2
B lk

]
. (8.28)

By comparing the distributions of the lifetime T and the RUL Lk betweenM1 and
M2, we can find that the introduction of state dependency in degradationmodeling has
a great influence on the lifetime estimation. During the process of conducting time-
space transformation, c2(t) equals 0 in M2 due to Lemma8.2, which indicates that
no time transformation will be made for only age-dependent nonlinear degradation
models. However, such a time transformation must be performed for M1 because
the drift coefficient function is s-dependent on the degradation state and c2(t) =
2bX . Furthermore, it can also be concluded that there is a need for a time-space
transformation in the situation of state-independent nonlinear degradation models.

8.5.2 Parameters Estimation

Suppose that up to time tk the degradation process has been measured discretely at
an ordered time series Tk

0 = [t0, . . . , tn, . . . , tk] with n < k, and the correspond-
ing observations are collected as Xk

0 = [x0, . . . , xn, . . . , xk]′. The interval between
observation time tn and tn−1 is denoted as Δn, where Δn = tn − tn−1. For different n,
Δn can be either equal or unequal, depending on the specific observation schedule.

Nowwe illustrate how to apply theMLEmethod proposed in Sect. 8.4 to estimate
unknown parameters in the above degradation model. Here we only illustrate the
case inM1, as the estimating procedure inM2 is quite similar and simpler. When the
degradation observations of degrading systems are obtained, the Hermite expansion
method described in Sect. 8.4 is used to find the MLE of unknown parameters in
the age- and state-dependent nonlinear degradation model (8.22). As for the model
described by (8.22), we have the Lamperti transformation of (8.22) as

dY(t) = μY (Y(t), t; θ)dt + dB(t) =
[
bXY(t) + aTbT

σB
exp (bT t)

]
dt + dB(t),

(8.29)

where Y(t) = γ (X(t), t) = X(t)/σB.
By setting J = 4, andK = 2 in (8.18) and (8.20), we can obtain an approximation

of the transition density accurate enough for parameter estimation with a relatively
low cost of computation. Consecutively, the approximated transition density from
tn−1 with state xn−1 to tn with xn can be written as
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p(4,2)
X (tn, xn|tn−1, xn−1) = 1

σB
p(4,2)
Y (tl, γ (xn, tn)|tn−1, γ (xn−1, tn−1) (8.30)

where p(4,2)
Y (tn, yn|tn−1, yn−1) is

p(4,2)
Y (tn, yn|tn−1, yn−1) = 1√	n

φ

(
yn − yn−1√

Δn

) 4∑
j=0

β2
j (yn, yn−1, tn, tn−1)

Hj

(
yn − yn−1√	n

)
. (8.31)

The particular forms of β2
j (yn, yn−1, tn, tn−1) for both M1 and M2 are summa-

rized in the Appendix. Then Substituting (8.31) into (8.21) yields the log-likelihood
function as

�(θ |Xk
0) =

k∑
n=1

lnP4,2
X (tn, xn|tn−1, xn−1)

=
k∑

n=1

ln p(4,2)
Y (tn, yn|tn−1, yn−1) − k ln σB. (8.32)

Therefore, maximizing (8.32) will generate the MLE of unknown parameters
bX , aT , bT , and σB in the modelM1. In the case study of this chapter, through taking
−�(θ |Xk

0) as the objective function, we use the well-known fminsearch function in
MATLAB to achieve the goal of maximizing �(θ |Xk

0).

8.5.3 Verifying the Accuracy of the Proposed Method

Observe that there are two approximations used in the proposed method: the approx-
imation in Theorem 1, and the approximation related with the transition density in
the parameters estimation method. In the presented RUL estimation method, these
two approximations are implemented in series, and thus it is inevitable to wonder
whether the approximation errors will be accumulated. Hence, the demonstration of
the accuracy of the proposed approximation method will be desired, as suggested by
the reviewer. In this chapter, to verify the accuracy of the proposed approximation
method against the true value, we carried out a numerical experiment based on M1

and the widely used Euler–Maruyama discretization policy [56].
First, we generate M degradation paths using the true parameters θ by the Euler

discretization

X(k+1)Δt = XkΔt + μ(XkΔt, kΔt; θ)Δt + σBY
√

Δt, (8.33)
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where Y ∼ N(0, 1), and Δt is the discretizing size.
Then, the degradation data of some randomly selected paths are used to estimate

the parameters through the MLE method proposed in Sect. 8.4. The estimated para-
meters θ̌ are not only compared with the true parameters θ , but also used to calculate
the analytical lifetime PDF fT |M(t;w, θ̌). Using the algorithm in the appendix of
[38], we also simulate the FPT of the degradation paths T = {T (1),T (2), . . . ,T (M)

}
,

where T (m) is the FPT of the m−th degradation path.
We compare the simulation results, namely the histogram of T, the analytical

lifetime PDF using the true parameters fT |M(t;w, θ̌), and the analytical lifetime PDF
using the estimated parameters fT |M(t;w, θ) with each other, to verify the accuracy
of the proposed approximation. As such, the accuracy of the presented approximated
lifetime PDF, the accuracy of the proposed MLE method, and the influence of these
series approximation will be jointly considered.

Specifically, the drift coefficient function is specified as μ(XkΔt, kΔt; θ) =
bXXkΔt + aTbt exp (bTkΔt) with parameters θ = [bX , aT , bT , σB]′ in the illustra-
tive example. To initialize the FPT simulation algorithm, we set the failure threshold
w = 1, the sample sizeM = 10 000, the initial degradation value X0ΔT = 0, and the
discretization step Δt = 0.01. The true values of parameters are given as bx = 0.01,
aT = 2, and bT = 0.2. Additionally, because σ dominates the uncertainty of the
degradation process, three different values of σB are used for comparisons: a small
value σB = 0.02, a medium value σB = 0.1, and a large value σB = 0.4. The main
results are shown in Fig. 8.1, in which the true, and estimated analytical lifetime
distributions are obtained by substituting θ , and θ̌ into (8.25), respectively.

The corresponding estimated parameters for three different cases are θ̌ =
[0.0201, 1.9953, 0.1984, 0.0261]′, θ̌ = [0.0202, 2.012, 0.2232, 0.0935]′, and θ̌ =
[0.0096, 1.7257, 0.2329, 0.4046]′, respectively. These results indicate that an accu-
rate estimate for the parameters can be obtained bymaximizing the analytical approx-
imation of the likelihood function. The solid lines in Fig. 8.1, presenting the analytical
approximation of the lifetime PDF using the true parameters, verify that the approx-
imation in Theorem8.1 matches the simulated lifetime well. In addition, the dashed
lines, denoting the analytical approximated PDF of the lifetime using the estimated
parameters, show that the proposed method can also provide a very close approxi-
mation to the simulated lifetime. Thus, the effectiveness of two approximations in
the presented method is verified numerically.

8.6 Case Study

In this section, we fit the bearing data from the PHM data challenge of 2012 [45] to
the proposed age- and state-dependent nonlinear degradation model. Note that the
failure times of bearings are known in the used PHM challenge data set, and thus the
actual RUL at each monitoring time is available. This information will facilitate the
model verification.
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Fig. 8.1 Comparison of the
histogram for the simulated
FPT and the analytical
approximation of the PDF
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Specifically, the models M1 and M2 in Sect. 8.5 are used in this case study for
illustration and demonstration purposes. Besides the maximized log-likelihood �max,
we use a performancemeasures such asAkaike InformationCriterion (AIC) [57], and
the score of accuracy (SOA) of the estimated RUL [45, 51], for model comparisons.
The smallest AIC corresponds to the best fitting accuracy, while the highest SOA
value indicates the best estimation of RUL. We introduce the definitions of AIC, and
SOA as follows.

Compared with existing models, an age- and state-dependent model generally
needs more parameters. Thus, AIC is used here to overcome the problem of overpa-
rameterization, which is defined as

AIC = −2�max + 2p (8.34)

where p is the number of the estimated model parameters, and �max is the maximized
likelihood.

The reasons why SOA is used arise from the following two considerations. First,
in practice, the underestimate of the RUL only leads to conservative decision-making
in maintenance and spare ordering for the degrading system, while the overestimated
RUL might result in disasters and immeasurable losses due to unexpected failures
of the system. In this circumstance, the SOA of the estimated RUL can differentiate
between underestimates and overestimates due to the fact that the good performance
of the estimation model relates to early predictions of the RUL. Second, SOA is
first defined and used in PHM data challenges, which have been held successfully
many times, and the SOA measure has indicated its superiority (see, e.g. [45, 51]).
Specifically, the SOA of the estimated RUL for experiment i is defined as

SOAi,tk =
{
e− ln(0.5)(Erk,ti /5 ) ,Eri,tk ≤ 0

e+ ln(0.5)(Erk,ti /20 ) ,Eri,tk > 0
, (8.35)

where Eri,tk is the prediction error at time tk on experiment i defined by

Eri,tk = 100 × ActLk − L̂k
ActLk

. (8.36)

In (8.36), ActLk is the actual RUL at time tk , and L̂k denotes the estimated RUL
which can be the s-measures mode, mean, or median of the distribution of the RUL.
Note that SOA is applied to the case that a point estimation of the RUL is available. In
this chapter, we use the mode of the estimated PDF of the RUL as the point estimate
because the distribution of the RUL is often highly skewed, and thus it is reasonable
to use the mode as a measure of central tendency rather than the mean.

After extracting degradation features using the approach described in [58], we
choose the band-pass filtered kurtosis minus 3 as the degradation path. The extracted
degradation data are illustrated in Fig. 8.1. The purpose of drawing Fig. 8.2 is to
illustrate the considered degradation processes, and the practical degradation data. As
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Fig. 8.2 Some degradation
paths of ball bearings under
operating condition 1
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Table 8.3 Estimated parameters and associated values for log-LF and AIC
Model Path bX aT bT σB �max AIC SOA

M1 3 −2.357e−4 1.496e−26 2.488e−3 6.449e−3 5847.481 −11686.962 23.794

4 −6.543e−4 3.172e−4 0.645e−4 7.523e−3 3257.247 −6506.494 23.635

5 −3.825e−4 5.312e−90 8.325e−3 3.623e−3 7611.754 −15215.508 23.915

M2 3 – 5.080e−33 3.0854e−3 6.358e−3 5845.908 −11685.816 23.169

4 – −1.212e−1 −4.873e−4 6.355e−3 3249.143 −6492.286 23.531

5 – 2.129e−93 8.642e−3 3.6228e−3 7608.516 −15211.032 23.890

shown inFig. 8.1,most of the degradation paths begin near zero,which corresponds to
a healthy state at the very beginning of the system’s degradation. As the degradation
is accumulated, the degradation path approaches a known preset failure threshold
w = 1, according to the training sets. In addition, the degradation paths exhibit
nonlinear trends. This result necessitates nonlinear degradation modeling for bearing
deterioration.

In this case study, the MLEs of unknown model parameters based on the training
data can serve as an initial solution for the MATLAB optimization function fmin-
search.

For each degradation path #3through#5 under the first operation condition with
1800 rpm and 4000 N, the last 25 observations were regarded as the test set, while the
remaining observations of each path were treated as the training set. Then, we model
the degradation data with the modelsM1, andM2, respectively. The main parameter
estimation results for different models were summarized in Table8.3, together with
comparative results regarding �max, AIC, and SOAk =∑24

k=1 SOAi,tk .
As shown in Table8.3, the estimated parameters of bX inM1 confirm the existence

of the state dependency in the degradation process, and the age- and state-dependent
model M1 outperforms the age-dependent model M2 in terms of the �max, AIC, and
SOA for all degradation paths #3, #4, and #5. Further, the SOA at each observation
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times of the test set are shown graphically in Figs. 8.3, 8.4, and 8.5 for the degradation
paths #3, #4, and #5, respectively.

The results illustrated in Figs. 8.3, 8.4 and 8.5 demonstrate that model M1 has
more accurate RUL estimations at almost all the observation times than does model
M2.

In addition, the performance of the model M1 exhibits a stable character. These
observations also suggest the advantage of considering the age- and state dependency
in degradation modeling and prognostics.

To have further comparisons, Figs. 8.6, 8.7 and 8.8 show the estimated PDFs of the
RULs, the estimated modes of the RULs, and the actual RULs under the modelsM1

andM2 at the last 25 observations with degradation paths #3, #4, and #5, respectively.
It is clear in Figs. 8.6 through 8.8 that the estimated RULs of modelM1 are closer

to the actual RULs than those of modelM2, especially for degradation paths #3 and
#4. Actually, degradation paths #3 and #4 show more complex dynamics than does
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path #5. The degradation trends of paths #3 and #4 are not obvious because of large
fluctuations. In such a case, using age- and state-dependent nonlinear degradation
models can improve the accuracy of the RUL estimation significantly.

The measures used in this chapter for model comparisons deserve some com-
ments. First, AIC and the maximized log-likelihood function �max are both criteria
used for measuring the modeling fitness rather than for evaluating the accuracy of the
prognosis, because AIC and the likelihood function are calculated from the degrada-
tion data that have been observed. However, in the prognosis, the failure event does
not occur at the current time, and the predicted RUL is at a future time. In this case,
though the improvement assessed by the AIC and the likelihood function in Table
III is marginal, the results in Figs. 8.6, 8.7 and 8.8 for prognosis indicate the supe-
riority of the proposed method. Second, the observation, that the improvement by
comparing SOAs is marginal, arises from the fact that only the point estimate of the
RUL is used in calculating SOA. However, the RUL is a random variable describing
the future time, and thus the estimated RUL is inevitable to include the uncertainty.
As a result, the PDF of the RUL includes all information of the random variable
Lk , i.e., the RUL. Therefore, the estimated PDFs of the RUL used in Figs. 8.6, 8.7
and 8.8 are more appropriate to reflect the prognostic ability of the proposed method
because more information is involved. As expected, Figs. 8.6, 8.7 and 8.8, and the
corresponding results, show some improvement of the presented method. Together
with these comparative studies, we conclude that it is necessary to consider the state
dependency in modeling nonlinear degradation processes of degrading systems, and
the performance of the estimated RUL is expected to be improved as a result.

Proof of Theorem8.1

Proof As formulated in (8.11), the PDF of the FPT of X(t) crossing a constant
thresholdW equals the PDF of the transformed standard BM crossing a t̃-dependent
critical level S(t̃). From Lemma8.2 in [38], pB(t̃)(S(t̃), t̃) can be formulated as
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pB(t̃)(S(t̃), t̃) = b(t̃)hB(t̃)(t̃), (8.37)

where hB(t̃)(t̃) is the PDF of B(t̃) on boundary S(t̃), expressed as

hB(t̃)(t̃) = 1√
2π t̃

exp

[
−S2(t̃)

2t̃

]
; (8.38)

and b(t̃) can be written as

b(t̃) = lim
s→t̃

(t̃ − s)−1EB(s)|B(t̃)

[
I(s,B(t̃))(SB(s) − B(s))|B(t̃) = SB(t̃)

]
. (8.39)

In the above formula, the indicator function I(s,B(t̃)) ∼= 1 under the assumption
that the probability of the transformed BM B(t̃) reaching boundary SB(t̃) before t̃
can be neglected. Then, b(t̃) will be formulated as

b(t̃) ∼= lim
s→t̃

EB(s)|B(t̃)

[
(SB(s) − B(s))|B(t̃) = SB(t̃)

]
t̃ − s

= lim
s→t̃

SB(s) − EB(s)|B(t̃)

[
B(s)|B(t̃) = SB(t̃)

]
t̃ − s

= lim
s→t̃

SB(s) − sSB(t̃)/t̃

t̃ − s

= lim
s→t̃

SB(s) − SB(t̃) + SB(t̃) − sSB(t̃)/t̃

t̃ − s
= lim

s→t̃

SB(t̃)(t̃ − s)/t̃ − (SB(t̃) − SB(s))

t̃ − s

= SB(t̃)

t̃
− dSB(t̃)

dt̃
. (8.40)

This completes the proof of Theorem8.1.

Proof of Theorem8.1

Proof After observingX(tk) at tk , we canwrite the degradation process {X(t), t ≥ tk}
for t > tk as dX(t) = g(X(t), t; θ)dt + σdB(t − tk), with initial value xk . Let

t = tk + lk, (8.41)

and

Y(lk) = X(lk + tk) − xk . (8.42)

Then, we have Y(0) = 0, and the following SDE with regard to lk .

dX(tk + lk) = g(X(tk + lk), tk + lk)d(tk + lk) + σBdB(lk + tk) (8.43)

From the linkages between t with tk and X(t) with Y(lk), the stochastic process
{X(t), t ≥ tk} can be transformed into the process {Y(lk), lk ≥ 0} in lk according to
the properties of BM as

dY(lk) = g(xk + Y(lk), lk + tk; θ)dlk + σBdB(lk). (8.44)
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As a result, the RUL at time tk is equal to the FPT of the process {Y(lk), lk ≥ 0}
crossing the threshold wk = w − xk . It is not difficult to verify that {Y(lk), lk ≥ 0}
satisfies all the conditions of Lemmas8.1 and 8.2. For simplicity, set g∗(y, lk; θ) =
g(y+xk, lk + tk; θ). According to Lemma8.2, both c∗

1(l), and c
∗
2(l) can be determined

as

c∗
1(lk) = 2g∗(y, lk; θ) − yc2(lk)

σB
, (8.45)

c∗
2(lk) = ∂g∗(y, lk; θ)

∂y
. (8.46)

And at the same time the time-space transformation Ψ ∗(lk, y), and φ∗(lk) can be
obtained by

Ψ ∗(y, lk) = exp

[
−1

2

∫ lk

0
c∗
2(u)du

]
y

σB
− 1

2

∫ lk

0
c∗
1(τ ) exp

[
−1

2

∫ τ

0
c∗
2(u)du

]
dτ,

ϕ∗(lk) =
∫ lk

0
exp

[
−1

2

∫ τ

0
c∗
2(u)du

]
dτ. (8.47)

Therefore, the conclusion in Theorem8.1 can be used conveniently to calculate
the PDF of the RUL lk when xk is available at time tk . As such, we directly have
S(l̃k) = Ψ ∗(wk, ϕ

∗−1(l̃k)), and the PDF of the RUL at tk as (8.16).
This completes the proof of Theorem8.2.

The particular forms of β2
j (yn, yn−1, tn, tn−1)

The particular forms of β2
j (yn, yn−1, tn, tn−1) in (8.31) are summarized herein as

follows.

β2
0 (yn, yn−1, tn, tn−1) = 1

β2
1 (yn, yn−1, tn, tn−1) = −√	nψ −

√	3
n

4
(2ψ10 + 2ψψ01 + ψ20)

β2
2 (yn, yn−1, tn, tn−1) = 	n

2
(ψ2 + ψ10) + 	2

n

12
(6ψψ01 + 6ψ2ψ10 + 4ψ2

10 + 4ψ11

+7ψψ20 + 2ψ30)

β2
3 (yn, yn−1, tn, tn−1) = −

√	3
n

6
(ψ3 + 3ψψ10 + ψ20)

β2
4 (yn, yn−1, tn, tn−) = −	2

n

24
(ψ4 + 6ψ2ψ10 + 3ψ2

10 + 4ψψ20 + ψ30)

where ψ,ψ10, ψ01, ψ11, ψ20, ψ20 are expressed as
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ψ = μY (yn−1, tn−1) = bXyn−1 + aTbT
σB

exp (bT tn−1)

ψ01 = ∂μY (y, t)

∂t
|y=yn−1 = aTb2T

σB
exp (bT tn−1)

ψ10 = ∂μY (y, t)

∂y
|y=yn−1 = bX

ψ11 = ∂μY (y, t)

∂y∂t
|y=yn−1 = 0

ψ20 = ∂2μY (y, t)

∂y2
|y=yn−1 = 0

ψ30 = ∂3μY (y, t)

∂y3
|y=yn−1 = 0

forM1, and

ψ = μY (yn−1, tn−1) = aTbT
σB

exp (bT tn−1)

ψ01 = ∂μY (y, t)

∂t
|y=yn−1 = aTb2T

σB
exp (bT tn−1)

ψ10 = ∂μY (y, t)

∂y
|y=yn−1 = 0

ψ11 = ∂μY (y, t)

∂y∂t
|y=yn−1 = 0

ψ20 = ∂2μY (y, t)

∂y2
|y=yn−1 = 0

ψ30 = ∂3μY (y, t)

∂y3
|y=yn−1 = 0

forM2.
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Chapter 9
Adaptive Prognostic Approach via Nonlinear
Degradation Modeling

9.1 Introduction

With the ever-increased high requirement of reliability and safety for critical systems,
accurately assessing the pending failure of a system has become an active research
area over the past decades. This also leads to an emerging concept called prognostics
and health management (PHM) [1–3]. PHM is an enabling discipline consisting
of technologies and methods to assess the reliability of a system in its actual life-
cycle conditions, to determine the advent of failure, and to mitigate system risk.
The past decade has witnessed an increasing research interest on various aspects
of PHM due primarily to the fact that PHM have been extensively applied in a
variety of fields including electronics, smart grid, batteries, bearings, motor drives,
electromechanical structures, analog electronic circuits, power industry, aerospace,
and military application, public health management [4–11].

The prognostic part of PHM is typically characterized by estimating the remaining
useful life (RUL) of a system, conditional on the available information at hand. In
fact, the estimation of the RUL has been considered as one of the most central
components in PHM [12–19]. Effective and accurate RUL estimation can avoid
catastrophic events, extend life cycle, and schedule timely healthcare actions [20–
22]. Many technological systems are subject, during their operating life, to a gradual
deterioration process that progressively degrades their performance until a failure
occurs [13, 23, 24]. For example, lithium-ion batteries have beenwidely used inmany
fields, including consumer electronics, electric vehicles, marine systems, aircrafts,
satellites, etc., due to their high power density, low weight, long lifetime, no memory
effect, and other advantages. Nevertheless, an inevitable problem is that lithium-ion
battery performance degradeswith cycling and aging. Such functionality degradation
of lithium-ionbatteriesmay cause reducedperformance and even catastrophic failure.
For example, in 2013, all Boeing 787 Dreamliners were indefinitely grounded due to
battery failures that occurred on two planes. However, the progression of degradation
of systems such as lithium-ion batteries and electromechanical systems is typically
stochastic in nature, resulting in the difficulty to estimate the RUL with certainty. To

© National Defense Industry Press and Springer-Verlag GmbH Germany 2017
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characterize the uncertainty of the estimated RUL, the form of the probability density
function (PDF) of the RUL is often required. Thus, this chapter pays a particular
attention to the estimation of the PDF of the required RUL.

The degradation processes of technological systems are usually affected by two
kind of variability, namely individual variability and temporal variability [25, 26].
The individual variability determines heterogeneity among the degradation paths of
different systems. The temporal uncertainty is referred to as the inherent uncertainty
associated with the progression of the degradation over time. For the individual vari-
ability, it can be usually modeled by introducing system-specific random effects by
some model parameters [27, 28]. Some efforts in this respect have been made by
proposing Bayesian procedures for real-time estimation of the RUL of degrading
units on the basis of sensor-based degradation models [29]. However, they assumed
that the variance parameter of the model is fixed for different units and thus is
estimated by offline data. In practice, different units have different degradation mag-
nitudes and hence different variance parameters. In addition, the fixed variance para-
meter dominates the variance of the estimated RUL for a particular system since
random effects on model parameters of this kind of models are very small for a
particular system [25].

For each single system, the temporal variability determines the randomfluctuation
over time of the degradation process. As advocated by [30, 31], this can be described
by an appropriate stochastic process which provides flexibility on describing the
characteristics of the temporal effects. Therefore, this chapter mainly considers the
stochastic process-based modeling approaches for prognostics. The central idea in
this kind of approaches is that the lifetime can be defined as the first hitting time
(FHT) of the degradation process crossing a failure threshold [32], i.e., soft failure.

If the degradation process is monotonic, the relationship between the degradation
and the FHT can be easily established [33]. For non-monotonic degradation process,
a Wiener process is a commonly used stochastic process-based model with a con-
stant degradation drift and with the dynamic part driven by the standard Brownian
motion. However, most of the works on the RUL estimation based on the Wiener
process assume that the degradation process has a linear path or can be linearized
by logarithmic or time-scale transformations [16, 24, 28, 34–36]. Such assumption
restricts the applications of these prognostic methods in several complex circum-
stances. For example, during the aircraft flight process, the engine load varies as
the aircraft is exposed to several distinct flight conditions including takeoff, maxi-
mum climb, maximum cruise, ground idle, etc. Moreover, if inclement weather is
encountered during flight, the aircraft may change altitude, accelerate, or decelerate
to avoid turbulence.Another example is the lithium-ion batterieswhich contains three
different operational profiles (charge, discharge, and impedance). These environmen-
tal/operational conditions affect the degradation processes of systems and lead to the
varying degradation rate of systems, i.e., nonlinear stochastic degradation.

As for nonlinear stochastic deteriorating systems, a nonlinear stochastic degra-
dation model for RUL estimation was presented in [26] by introducing a time-
varying degradation rate function. In [26], the RUL distribution was derived under
the assumption that if the degradation process hits the threshold at a certain time
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t, then the probability that such a process crossed the threshold level before time
t can be negligible. However, only the current degradation observation is consid-
ered in the estimated RUL and the parameters in the model cannot be adaptively
updated via newly monitored degradation data. There are reported models utilizing
the degradation data to date for evaluating and updating the RUL [29, 34, 37]. Using
the history of observed degradation, degradation models based on linear Wiener
processes were proposed by [34, 37] with an adapted drift to estimate the RUL.
The work [29] presented an exponential-like degradation model with a Brownian
error for RUL estimation, where the historical data to date of individual equipment
are incorporated by Bayesian mechanism. Following [29], many variants have been
reported (see a review in [38]). However, such models are limited to those which
can transform the exponential path into a linear path. The work in [26] was extended
by [39], but the result for RUL estimation was limited to the nonlinear model with
the power function. Recently, Zhou et al. in [40] proposed a promising prognostic
framework for individual units subject to hard failure, based on joint modeling of
degradation signals and time-to-event data. In this work, the degradation signals are
modeled using a mixed-effects regression model and time-to-event data are modeled
using the Cox Proportional Hazard (PH) model where the degradation signals are
used as covariate information. Then, by updating the parameters in the degradation
model, the RUL prediction is achieved by formulating the relationship between the
survival function and the hazard rate function. Therefore, the proposed prediction
method in [40] focuses mainly on the case of hard failure. In other words, both the
degradation signals and time-to-event data are required to be available. However,
time-to-event data might be scarce or even non-existent for systems which are costly
or time-consuming to collect time-to-event data. In this case, the hazard rate and
its associated parameters are difficult to determine. In addition, the mixed-effects
regression models might not be effectively model the temporal variability in sto-
chastic degradation processes [30, 31].

There are also prognostic studies with nonlinear models, but under simulation-
based framework [41–43]. For example, Zhou et al. in [42] proposed a nonlinear
state-space model to estimate the RUL, where the RUL was estimated by Monte
Carlo method and the unknown parameters were estimated through expectation-
maximization (EM) algorithm.Orchard et al. in [43] proposed the concept of artificial
evolution to estimate unknown model parameters within a particle-filtering-based
framework and an adaptation mechanism to modify the variance of the uncertainty
source that defines the performance of the artificial evolution algorithm. To do so, the
health state and model parameters can be jointly estimated by particle filter. Similar
ideas can also be found in [44–46]. However, the particle filter is a Monte Carlo-
based approach, and thus only the numerical result of the estimated RUL distribution
can be obtained and an explicit PDF estimate of the RUL is difficult to achieve. In
the context of PHM, it is necessary and valuable to derive the PDF of the RUL
with an explicit form so as to provide real-time RUL estimation for the subsequent
maintenance scheduling.

The purpose of this chapter is to develop a general nonlinear degradation process
model that can generate an explicit RUL distribution and adapt to the history of
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observed degradation data.In particular, the goal is to shed light on three fundamen-
tal issues frequently encountered in soft failure prognosis: (i) nonlinear degradation
modeling without requiring data transformation and time-to-event data, (ii) obtain-
ing and adaptively updating the explicit expression of the RUL distribution derived
from the degradation process with newly observed data, and (iii) updating estimated
parameters of the degradation model.

To address the above issues, an adaptive and nonlinear prognostic model is pre-
sented forRULestimation, inwhich the dynamics and nonlinearity of the degradation
process are modeled by a time-dependent drift coefficient. This degradation model
can cover conventionally linearmodels. In order tomake theRUL estimation depend-
ing on the history of the observations, a state-spacemodel is constructed andBayesian
filtering is applied to update one parameter in the drifting function through treating
this parameter as a hidden state variable. The PDF of the RUL is derived with an
explicit form and some commonly used linear model-based methods can be shown
to be special cases of the proposed model. In addition, the EM algorithm in con-
junction with the Kalman filter is utilized to update the drifting parameter and other
parameters in the state-space model simultaneously and recursively. Finally, several
numerical examples and an application to lithium-ion batteries data are provided to
validate the proposed approach.

The remainder parts are organized as follows. Section9.2 develops an adaptive
and nonlinear prognostic model for RUL estimation. In Sect. 9.3, the parameter esti-
mation/updating approach is presented. An illustrative example to the power model
is given in Sect. 9.4. In Sect. 9.5, numerical examples and an application are provided
to demonstrate the developed method.

9.2 Nonlinear Model Description and RUL Estimation

9.2.1 Modeling Description

Let {X(t), t ≥ 0} denote the stochastic process describing the progression of degra-
dation over operating time t when starting from a known initial state X(0) = x0.
In order to model the nonlinear stochastic process of systems such as lithium-ion
batteries, the degradation at time t is denoted as follows

X(t) = x0 + λ ·
∫ t

0
μ(τ ;ϑ)dτ + σBB(t), (9.1)

where the degradation process X(t) is driven by a standard Brownian motion (BM)
B(t)with a nonlinear drift λ ·μ(t;ϑ). In (9.1), λ ·μ(t;ϑ) and σB are the drift and dif-
fusion coefficients, respectively;μ(t;ϑ) is a nonlinear function over t with unknown
parameter vector ϑ , which can be used to characterize time-variable and nonlinear
performance of systems such as lithium-ion batteries and electromechanical systems;
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λ is a proportional parameter controlling the speed of the nonlinear degradationwhile
ϑ is used to determine the shape of the degradation progression. Without loss of gen-
erality, it is assumed X(0) = x0 = 0. Further, let φ = [λ, ϑ, σB] denote the model
parameters.

The motivation of using degradation model (9.1) is twofold. First, the engineer-
ing systems possibly experiences different operating conditions such as charge, dis-
charge, and impedance conditions for lithium-ion batteries, and thus the degradation
paths of systems exhibit varying degradation rates. Second, the model (1) uses a
relatively general Wiener process with a nonlinear drift part. It is general since it can
cover linear models used in the literature and include a variety of nonlinear paths
through selecting the forms of μ(t;ϑ). For example, if μ(t;ϑ) is a constant, (9.1) is
reduced to the Wiener process with a constant drift, which has been widely used to
model degradation processes with linear paths [16, 24, 34, 37].

Now, we illustrate the main modeling principle of estimating the RUL based
on (9.1). From [31, 32], the concept of the FHT is used to define the lifetime and
then infer the RUL. In other words, when the degradation X(t) modeled as (9.1)
reaches a preset critical level w, the system can be declared to be failed and thus
there has no useful lifetime left. Therefore, it is natural to view the event of lifetime
termination as the point that X(t) exceeds the threshold level w for the first time. For
critical equipments, it is usually mandatory for putting this into practice and once the
observed degradation is equal or above the set threshold level that the system must
be stopped for inspecting.

Under model expressed by (9.1), and based on the concept of the FHT, the FHT
T of {X(t), t ≥ 0} crossing threshold w can be defined as

T = inf {t : X(t) ≥ w|X(0) < w} . (9.2)

As a result, the key for estimating the RUL is to derive the PDF of lifetime T ,
denoted as f T |φ ( t| φ).

9.2.2 Derivation of the RUL Distribution

From [26], the approximated distribution of T can be obtained by the following
lemma.

Lemma 9.1 For the degradation process {X(t), t ≥ 0} given by (9.1), if μ(t;ϑ) is
a continuous function of time t in [0,∞), then the PDF of the FHT T of X(t) defined
by (9.2) can be approximated with an explicit form as follows:

f T |φ ( t| φ) ∼= 1√
2π t

(
SB(t)

t
+ λ

σB
μ(t;ϑ)

)
exp

[
−S2B(t)

2t

]
, (9.3)

where SB(t) = (w − λ · ∫ t
0 μ(τ ;ϑ)dτ)/σB.
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Lemma9.1 is obtained in the context of using a Wiener process for degradation
modeling under an assumption that, if the degradation process is hitting the thresh-
old w at a certain time t exactly, then the probability that such a process crossed the
threshold level before time t is negligible. This assumption has been well demon-
strated by recent prognostics studies in [26, 47–49]. FromLemma9.1, it can be easily
found that most of the current models based on the Wiener process with a linear drift
can be covered by the proposed model. That is to say, f T |φ ( t| φ) can be reduced to
the inverse Gaussian distribution provided that λ · μ(t;ϑ) is a constant.

However, in (9.3), the estimated PDF of the FHT does not consider the real-time
observations of the degradation process. Considering the potential for updating the
knowledge of the process when new degradation observation X(ti) = xi become
available, for t ≥ ti, the degradation process over time since ti can be revised as

X(t) = xi + λ

(∫ t

0
μ(τ ;ϑ)dτ − λ ·

∫ ti

0
μ(τ ;ϑ)dτ

)
+

σB (B(t) − B(ti))

= xi + λ ·
∫ t

ti

μ(τ ;ϑ)dτ + σBB(t − ti) (9.4)

for t ≥ ti.
In such case, the residual t − ti corresponds to the realization of the RUL at time

ti if t is the FHT of {X(t), t ≥ ti}. Given X(ti) = xi, the RUL at ti can be defined as

Li = inf { li : X(ti + li) ≥ w|X(ti) = xi,φ} , (9.5)

with the PDF fLi|xi,φ(li|xi,φ).
Taking the transformation li = t−ti with li ≥ 0 for (9.4), the process {X(t), t ≥ ti}

can be transformed with timescale over the residual time li, i.e., RUL, as

X(li + ti) = xi + λ ·
∫ li+ti

ti

μ(τ ;ϑ)dτ + σB (B(li + ti) − B(ti)) . (9.6)

As a result, the RUL at time ti is equal to the FHT of the process {Y(li), li ≥ 0}
crossing threshold wi = w − xi, where Y(li) = X(li + ti) − xi and Y(0) = 0. That is
to say, given ti,

Y(li) = λ ·
∫ li+ti

ti

μ(τ ;ϑ)dτ + σBW (li), (9.7)

where W (li) = B(li + ti) − B(ti).
In order to derive fLi|xi,φ(li|xi,φ), it is necessary to prove that the stochastic process,

{W (li), li ≥ 0}, with W (li) = B(li + ti) − B(ti) is still a BM. This is guaranteed by
the following lemma.



9.2 Nonlinear Model Description and RUL Estimation 253

Lemma 9.2 Given ti, the stochastic process, {W (t), t ≥ 0}, with W (t) =
B(t + ti) − B(ti) for any t ≥ 0 is still a standard BM, where {B(t), t ≥ 0} is a
standard BM.

The proof of Lemma9.2 can be easily achieved by checking the properties of the
standard BM. As such, the estimated PDF of the RUL, fLi|xi,φ(li|xi,φ), conditional
on the current observation and φ can be obtained by the following theorem.

Theorem 9.1 Under the same conditions as Lemma9.1, the PDF of the RUL can
be formulated at time ti with the available current degradation measurement xi as

fLi|xi,φ(li|xi,φ) ∼=wi − λ (υ(li) − liμ(li + ti;ϑ))

σB

√
2π l3i

×

exp

[
− (wi − λυ(li))

2

2σ 2
Bli

]
, (9.8)

with υ(li) = ∫ li+ti
ti

μ(τ ;ϑ)dτ and wi = w − xi.

Proof Based on Lemma9.1, (9.6) and (9.7), it is known that {Y(li), li ≥ 0} is still
a nonlinear degradation process satisfying (9.1) with a drift part λ · μ(li + ti;ϑ)

and initial value Y(0) = 0. Therefore, the RUL estimation at ti can be calcu-
lated as the FHT of {Y(li), li ≥ 0} crossing wi. In addition, it is easy to ver-
ify that {Y(li), li ≥ 0} satisfies all the conditions of Lemma9.1; so it is obtained

SB(li) =
[
wi −

∫ li+ti
ti

μ(τ ;ϑ)dτ
]
/σB. From (9.3), the proof of Theorem9.1 is

completed.

9.2.3 Adaptive RUL Estimation

It is noted that (9.11) only uses the current monitoring value xi when making extrap-
olations about the future trend of the degradation process. Now, consider making the
estimated RUL depend on X0:i = {x0, x1, . . . , xi}, which is the history of degrada-
tion observations for the system up to ti. Toward this end, from the FHT concept, the
definition of the RUL Li at ti in (9.7) can be revised as

Li = inf { li : X(ti + li) ≥ w|X0:i} , (9.9)

with the PDF f Li|X0:i ( li|X0:i).
To incorporate the history of the observations, the concept of combined parameter

and state estimation, suggested in [50], has been frequently adopted in prognostic
studies such as [43–46]. This chapter also utilizes this concept to achieve joint state
and parameter estimation and to make the history of the observations be incorporated
into the estimation. Specifically, an updating procedure for the parameter λ in the
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drifting part λ · μ(t;ϑ) is introduced by a random walk model λi = λi−1 + η over
time, where η ∼ N(0,Q). In this case, the parameter λ evolves as a time-dependent
variable, conditional on the observed data up to ti. The degradation equation can be
reconstructed with a state-space model as

{
λi = λi−1 + η

xi = xi−1 + λi−1Ωi(ϑ) + σBεi
, (9.10)

where Ωi(ϑ) = h(ti;ϑ) − h(ti−1;ϑ), h(ti;ϑ) = ∫ ti
0 μ(τ ;ϑ)dτ , the error term in

the state equation is distributed as η ∼ N(0,Q), and εi = [
B(tk) − B(tk−1)

] ∼
N(0, ti − ti−1). The use of ti − ti−1 as the variance of εi is required by the property
of BM. Here it is assumed that the initial drift λ0 follows a normal distribution with
mean μ0 and variance P0. As such, the drift parameter is considered as a hidden
’state’ and can only be estimated from the historical information to date, X0:i. In the
first equation of (9.10), λi follows a Gaussian distribution which can be estimated by
a recursive filter based on X0:i. In the following, denote its mean as λ̂i = E(λi|X0:i)
and its variance as Pi|i = var(λi|X0:i). In the framework of Bayesian filtering, λ̂i and
Pi|i can be easily obtained by Kalman filtering in a recursive manner, as summarized
below.

Algorithm 9.1 (Kalman filtering algorithm for estimating λi)
Step 1: Initialize μ0,P0.
Step 2: State estimation at time ti

λ̂i|i−1 = λ̂i−1

Pi|i−1 = Pi−1|i−1 + Q
Ki = Pi|i−1Ωi(ϑ)(Ωi(ϑ)2Pi|i−1 + σ 2

B(ti − ti−1))
−1

λ̂i = λ̂i−1 + Ki

(
xi − xi−1 − λ̂i−1Ωi(ϑ)

) .

Step 3: Updating variance Pi|i = Pi|i−1 − Ωi(ϑ)KiPi|i−1.

Based on (9.10) and the Gaussian nature of the Kalman filter, the PDF of λi

conditional on X0:i is still Gaussian with

p(λi|X0:i) = 1√
2πPi|i

exp

[
− (λi − λ̂i)

2

2Pi|i

]
, (9.11)

where the dependence between λi and X0:i is contained in λ̂i and Pi|i.

Remark 9.1 In above updating mechanism, we only make λ adaptive with the
observed data to date. For a more realistic implementation, making both λ and ϑ

adapted with the history may be more appropriate, but this consideration will require
more complicated estimating procedure such as extended Kalman filter or particle
filter. This consideration deserves future research.

From the state equation in (9.10), it is known that λi is random and characterized
by the PDF p(λi|X0:i), as denoted by (9.11). Consequently, to derive f Li|X0:i ( li|X0:i),
it is obtained
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f Li|X0:i ( li|X0:i) =
∫

fLi|X0:i,λi(li|X0:i, λi)p(λi|X0:i)dλi, (9.12)

where fLi|X0:i,λi(li|X0:i, λi) denotes the estimated RUL conditional on λi and X0:i.
It is worth noting that other parameters are omitted in the conditional part of
fLi|X0:i,λi(li|X0:i, λi) for notation simplicity since they are not random. In order to
calculate fLi|X0:i,λi(li|X0:i, λi), the following result is given.

Theorem 9.2 Once X0:i is available at ti, the following holds,

fLi|X0:i,λi(li|X0:i, λi) = fLi|X(ti)=xi,λi(li|λi, xi). (9.13)

Proof Due to the Markov property of the standard BM, it is obtained

fLi|X0:i,λi(li|X0:i, λi) = d

dli
Pr(Li ≤ li|X0:i, λi)

= d

dli
Pr(inf { li : X(li + ti) ≥ w|X0:i} ≤ li|X0:i, λi)

= d

dli
Pr(inf { li : X(li + ti) ≥ w|X0:i} ≤ li|X(ti) = xi, λi)

= fLi|X(ti)=xi,λi(li|λi, xi). (9.14)

This completes the proof.

In order to calculate f Li|X0:i ( li|X0:i), it is required to compute the integration of
(9.12). To avoid the lengthy derivation, the following lemma is directly given [16].

Lemma 9.3 If Z ∼ N(μ, σ 2) and w,A,B ∈ R,C ∈ R
+, then the following holds:

EZ

[
(A − Z) · exp

(
− (B − Z)2

2C

)]

=
√

C

σ 2 + C

(
A − σ 2B + μC

σ 2 + C

)
× exp

(
− (B − μ)2

2
(
σ 2 + C

)
)

. (9.15)

From (9.12) and Theorem9.2, the following conclusion is obtained to derive the
PDF of the RUL conditional on X0:i, i.e., f Li|X0:i ( li|X0:i).
Theorem 9.3 As for the degradation process defined in (9.1), given X0:i, the PDF
of the RUL conditional on X0:i can be formulated as

f Li|X0:i ( li|X0:i) ∼=wiΛ(li) − αi(li;ϑ)Δ(li)√
2π l2i Λ

3(li)
×

exp

⎡
⎢⎣−

(
wi − λ̂iυ(li)

)2

2Λ(li)

⎤
⎥⎦ (9.16)
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whereαi(li;ϑ) = υ(li)−liμ(li+ti;ϑ),υ(li) = ∫ li+ti
ti

μ(τ ;ϑ)dτ ,Λ(li) = Pi|iυ(li)2+
σ 2
Bli, and Δ(li) = Pi|iυ(li)wi + λ̂iσ

2
B li.

Proof In order to complete the proof, fLi|X0:i,λi(li|X0:i, λi) should be first derived
from (9.13). As a result of Theorem9.1, fLi|X0:i,λi(li|X0:i, λi) can be derived from
(9.8) through replacing λ with λi. From (9.11)–(9.13), it is obtained

f Li|X0:i ( li|X0:i) = ∫
fLi|X(ti)=xi,λi(li|λi, xi)p(λi|X0:i)dλi

= E λi|X0:i
[
fLi|X(ti)=xi,λi(li|λi, xi)

]
= 1

σB

√
2π l3i

E λi|X0:i

[
(wi − λiαi(li;ϑ)) exp

[
− (wi−λiυ(li))

2

2σ 2
B li

]]

= αi(li;ϑ)

σB

√
2π l3i

E λi|X0:i

[(
wi

αi(li;ϑ)
− λi

)
exp

[
−

(
wi

υ(li )
−λi

)2

2σ 2
B li/(υ

2(li)

]] (9.17)

where αi(li;ϑ) = υ(li) − liμ(li + ti;ϑ).
Therefore, setting the followings and applying Lemma9.3 will complete the proof

after necessary simplification.

A = wi

αi(li;ϑ)
,B = wi

υ(li)
,C = σ 2

Bli
υ2(li)

. (9.18)

From (9.16), once a new degradation observation is available and parameter λ is
updated, the RUL of this monitored system can be adaptively updated. Comparing
(9.16) with (9.8), it is found that the uncertainty in estimating λi, i.e., Pi|i, propagates
into the PDF of the RUL f Li|X0:i ( li|X0:i) and Pi|i can be updated by Kalman filter as
well.

For the model (9.16) to be used in real-time estimation, several unknown para-
meters, including σ 2

B , ϑ, μ0,P0 and Q, need to be estimated. The selection of these
parameters will surely affect the performance of the RUL estimation. For instance,
the selected variance Q of the random walk noise determines both the rate of the
convergence of λ and the estimation performance once convergence is achieved. A
large Q will yield quick convergence but tracking with too wide a variance, whereas
too small a Q may yield a very slow convergence. Therefore, it is desirable to esti-
mate these parameters to obtain the best possible performance. The mechanism to
estimate these parameters will be discussed in the next section.

9.3 Adaptive Parameter Estimation

In this section, θ is used to denote the unknown parameter vector, θ = [
σ 2
B , ϑ ,

μ0,P0,Q], and Υi = {λ0, λ1, . . . , λi} is the history of the proportional parameter
up to ti. In order to achieve simultaneous estimation of the proportional parameter λ

and θ , this chapter considers to calculate the maximum likelihood estimation (MLE)
of θ once the new observation xi is available. In this case, the log-likelihood function
for the degradation data X0:i can be written as
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ι(θ) = log[p(X0:i|θ)] =
∑i

j=1
log[p(xj|X0:j−1, θ)]. (9.19)

In the following, θ̂i = [
σ 2
B,i, ϑi, μ0,i,P0,i,Qi

]
is used to represent the MLE of θ

conditional on X0:i at ti. Under model (9.10), p(X0:i| θ) is induced by the missing
data, since the data Υi about parameter λ is used as the state in state-space model
(9.10). In general, it is difficult to write the function p(X1:i| θ) with an explicit form
when there exists a hidden variable. As such, it is natural to consider the effect
of missing data Υi to search for the optimum of the log-likelihood function of the
parameters. The EM algorithm [51] provides a natural framework for approaching a
parameter estimation problem involved hidden variables.

In the EM algorithm, by exploiting the relationship between p(X0:i |θ )and
p(X0:i, Υi| θ), it is possible to generate a sequence of parameter estimates that con-
verge to the MLE of the parameters. The complete-data log-likelihood is defined as
�(θ) = log p(X0:i, Υi| θ). Then the estimation procedure consists of two steps E-step
and M-step,

• E-step: Calculate

�(θ | θ̂ (k)
i ) = E

Υi|X0:i,θ̂ (k)
i

{log p(X0:i, Υi| θ)} , (9.20)

where θ̂
(k)
i =

[
σ
2(k)
B,i , a(k)

i , μ
(k)
0,i ,P

(k)
0,i ,Q

(k)
i

]
denotes the parameter estimation in the

kth iteration conditional on X0:i.
• M-step: Calculate

θ̂
(k+1)
i = argmax

θ
�(θ | θ̂ (k)

i ). (9.21)

To bemore precise, in the E-step, to obtain the expected value of �(θ)with respect
to the kth iteration of θ̂

(k)
i and the observed data X0:i, there is

�(θ | θ̂ (k)
i ) = E

Υi|X0:i,θ̂ (k)
i

{log p(X0:i, Υi| θ)}
= E

Υi|X0:i,θ̂ (k)
i

{log p(X0:i| Υi, θ)} + E
Υi|X0:i,θ̂ (k)

i
{log p(Υi| θ)} . (9.22)

Following (9.13), the full likelihood function can be formulated as

log �(θ) = log p(X0:i| Υi, θ) + log p(Υi| θ) = log p(λ0| θ)+
log

∏i

j=1
p(λj

∣∣ λj−1, θ) + log
∏i

j=1
p(xj

∣∣ λj−1, θ) (9.23)
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From state-space model (9.10), it is obtained λj

∣∣ λj−1 ∼ N(λj−1,Q), xj
∣∣ λj−1 ∼

N
(
xj−1 + λj−1

∫ tj
tj−1

μ(τ ;ϑ)dτ , σ 2
B(tj − tj−1)

)
andλ0 ∼ N(μ0,P0). Using (9.23) and

ignoring the constant terms, the complete likelihood function can be written as

2 log �(θ) = − logP0 − (λ0−μ0)
2

P0
− ∑i

j=1

(
logQ + (λj−λj−1)

2

Q

)

− ∑i
j=1

(
2 log σB +

(
xj−xj−1−λj−1

∫ tj
tj−1

μ(τ ;ϑ)dτ
)2

σ 2
B (tj−tj−1)

)
(9.24)

The conditional expectation, �(θ | θ̂ (k)
i ), given in (9.20) can be written as

�( θ | θ̂ (k)
i ) = E

Υi |X0:i,θ̂ (k)
i

[
2 log �(θ)

]

= E
Υi |X0:i,θ̂ (k)

i

[
− logP0 − (λ0 − μ0)

2

P0
−

∑i

j=1

(
logQ + (λj − λj−1)

2

Q

)

−
∑i

j=1

⎛
⎜⎝2 log σB +

(
xj − xj−1 − λj−1

∫ tj
tj−1

μ(τ ; ϑ)dτ
)2

σ 2
B(tj − tj−1)

⎞
⎟⎠

⎤
⎥⎦ . (9.25)

Clearly, to derive the expectation implies to work out E
Υi|X0:i,θ̂ (k)

i
(λj), EΥi|X0:i,θ̂ (k)

i

(λ2
j ) and EΥi|X0:i,θ̂ (k)

i
(λjλj−1), which are the conditional expectation given X0:i. In this

chapter, Rauch-Tung-Striebel (RTS) smoother is used to provide an optimal estimate
of the above conditional expectations [52]. The smoothing algorithm is summarized
as follows, where Mj|i = cov(λj, λj−1

∣∣X0:i).

Algorithm 9.2 (RTS smoothing algorithm)
Step 1: Forwards iteration by Kalman filter algorithm
Step 2: Backwards iteration

Sj = Pj|jP−1
j+1|j

λ̂j|i = λ̂j + Sj(λ̂j+1|i − λ̂j+1|j ) = λ̂j + Sj(λ̂j+1|i − λ̂j)

Pj|i = Pj|j + S2j (Pj+1|i − Pj+1|j )
Step 3: Initialize

Mi|i =
(
1 − Ki

∫ tj
tj−1

μ(τ ;ϑ)dτ
)
Pi−1|i−1

Step 4: Backwards iteration for smoothing covariance
Mj|i = Pj|jSj−1 + Sj(Mj+1|i − Pj|j)Sj−1

From the RTS smoothing algorithm, the conditional expectations, E
Υi|X0:i,θ̂ (k)

i
(λj),

E
Υi|X0:i,θ̂ (k)

i
(λ2

j ), and E
Υi|X0:i,θ̂ (k)

i
(λjλj−1) can be calculated as follows:

E
Υi|X0:i,θ̂ (k)

i
(λj) = λ̂j|i ,

E
Υi|X0:i,θ̂ (k)

i
(λ2

j ) = λ̂2
j|i + Pj|i ,

E
Υi|X0:i,θ̂ (k)

i
(λjλj−1) = Pj|jSj−1+

Sj(Mj+1|i − Pj|j)Sj−1 + λ̂j|i λ̂j−1|i

. (9.26)
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Together with (9.25) and (9.26), �(θ | θ̂ (k)
i ) can be written as

2�(θ | θ̂ (k)
i ) = E

Υi|X0:i,θ̂ (k)
i
[2�i(θ)]

= E
Υi|X0:i,θ̂ (k)

i

[
− logP0 − (λ0−μ0)

2

P0
− ∑i

j=1

(
(λj−λj−1)

2

Q

)

− ∑i
j=1

(
log σ 2

B +
(
xj−xj−1−λj−1

∫ tj
tj−1

μ(τ ;ϑ)dτ
)2

σ 2
B (tj−tj−1)

)]
− i logQ

= − logP0 − C0|i −2λ̂0|i μ0+μ2
0

P0
−∑i

j=1

(
logQ + Cj|i −2Cj,j−1|i +Cj−1|i

Q

)
−

∑i
j=1

(
log σ 2

B + (xj−xj−1)
2+(

∫ tj
tj−1

μ(τ ;ϑ)dτ)2Cj−1|i
σ 2
B (tj−tj−1)

)
+

∑i
j=1

(
2λ̂j−1|i (xj−xj−1)·

∫ tj
tj−1

μ(τ ;ϑ)dτ

σ 2
B (tj−tj−1)

)

(9.27)

After obtaining �(θ | θ̂ (k)
i ), the unknown parameters θ̂

(k+1)
i can be obtained by

maximizing �(θ | θ̂ (k)
i ) with respect to θ . However, it is difficult to obtain the explicit

form of θ̂
(k+1)
i through maximizing (9.27) due to the effect of the nonlinear part

involved by the parameter ϑ . In order to tackle this problem, θ̂
(k+1)
i is calculated

through the technique of a profile log-likelihood function as follows.
Firstly, given ϑ , the results of the estimated parameter θ̂

(k+1)
i in the (k+1)th step

can be summarized in the following.

μ
(k+1)
0,i = λ̂0|i ,

P(k+1)
0,i = C0|i − λ̂2

0|i = P0|i ,
Q(k+1)

i = 1
i

∑i
j=1 (Cj|i − 2Cj,j−1|i + Cj−1|i ),

σ
2(k+1)
B,i (ϑ) = 1

i

∑i
j=1

(
(xj−xj−1)

2+(
∫ tj
tj−1

μ(τ ;ϑ)dτ)2Cj−1|i
tj−tj−1

)
−

1
i

∑i
j=1

(
2λ̂j−1|i (xj−xj−1)

∫ tj
tj−1

μ(τ ;ϑ)dτ

tj−tj−1

)
.

(9.28)

with Cj|i = E
Υi|X0:i,θ̂ (k)

i
(λ2

j ),Cj,j−1|i = E
Υi|X0:i,θ̂ (k)

i
(λjλj−1). It is noted here that

σ
2(k+1)
B,i (ϑ) is a function of ϑ , while μ

(k+1)
0i ,P(k+1)

0i ,Q(k+1)
i are free of the effect of ϑ

provided that θ̂ (k)
i is given.

Secondly, substituting (9.27) into (9.28) gives the profile log-likelihood function
as

2�(ϑ | θ̂ (k)
i ) = − logP0|i − 1−∑i

j=1

(
logQ(k+1)

i + Cj|i −2Cj,j−1|i +Cj−1|i
Q(k+1)

i

)

− ∑i
j=1

(
log σ

2(k+1)
B,i (ϑ) + (xj−xj−1)

2+(
∫ tj
tj−1

μ(τ ;ϑ)dτ)2Cj−1|i
σ
2(k+1)
B,i (ϑ)(tj−tj−1)

)

+ ∑i
j=1

(
2λ̂j−1|i (xj−xj−1)

∫ tj
tj−1

μ(τ ;ϑ)dτ

σ
2(k+1)
B,i (ϑ)(tj−tj−1)

)
. (9.29)
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As such, the estimate of ϑ , i.e., ϑ(k)
i , can be obtained by maximizing the profile

log-likelihood function in (9.29) through a search algorithm. In this chapter, ’fmin-
search’ function in MATLAB is utilized to optimize (9.29), which is relatively easy
to perform. Now, substituting ϑ

(k)
i into (9.28), the estimates of σ

2(k+1)
B,i (ϑ

(k)
i ), μ

(k+1)
0,i ,

P(k+1)
0,i ,Q(k+1)

i are obtained, respectively. In contrast with directly maximizing (9.27)

to obtain θ̂
(k+1)
i , the number of the unknown parameters in the search algorithm is

reduced by adopting the above profile log-likelihood function technique. Then, the
algorithm iterates the E-step and M-step until a criterion of convergence is satisfied.

9.4 An Illustrative Example

For simplicity and an illustration purpose, this section considers the following power
model to illustrate the implementation of the presented approach,

X(t) = λta + σBB(t). (9.30)

It is noted that (9.30) is a nonlinear model fallen into the type defined in (9.1) with
μ(t;ϑ) = ata−1 and φ = [ϑ, σB] = [λ, a, σ 2

B ]. This kind of power model has been
found in many applications such as modeling crack length and battery data [53–55].
Of course, different forms of μ(t;ϑ) could be used, if it is suggested by the specific
application of interest.

By Lemma9.1, the PDF of the FHT corresponding to (9.30) can be formulated
directly as

f T |φ ( t| φ) ∼= w − λta(1 − a)

σB

√
2π t3

exp
[−(w − λta)2

/
2σ 2

B t
]
. (9.31)

Once the history of degradation observations X0:i up to ti is available, the PDF of
the estimated RUL can be formulated by Theorem9.3 as

f Li|X0:i ( li|X0:i) ∼= wiΛ(li) − Δ(li)√
2π l2i Λ

3(li)
exp

⎡
⎢⎣−

(
wi − λ̂iυ(li)

)2

2Λ(li)

⎤
⎥⎦ , (9.32)

with αi(li;ϑ) = υ(lti)−ali(li+ti)a−1, υ(li) = (li+ti)a−tai ,Λ(li) = Pi|iυ(li)2+σ 2
B li,

Δ(li) = Pi|iυ(li)wi + λ̂iσ
2
B li and wi = w − xi.

It is noted thatPi|i and λ̂i can be obtained viaAlgorithm9.1 by settingh(ti;ϑ) = tai .
Accordingly, the parameter estimation algorithm in Sect. 9.3 can be applied to the
model (9.30) so as to implement adaptive RUL estimation.
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9.5 Numerical Example and Case Study

In this section, a numerical simulation and a case study for battery data are provided to
compare the performance of the presentedmethodwith some existingmodels. Here a
loss function is employed to enable a direct comparisonwith any alternativemodeling
approach that produces a conditional PDF for the underlying RUL estimation. The
loss function is the mean-squared error (MSE) about the actual RUL obtained at each
observation point [16], defined as

MSEi =
∞∫
0

(li − l̃i)
2f Li|X0:i ( li|X0:i) dli, (9.33)

where l̃i is the actual RUL obtained at ti and f Li|X0:i ( li|X0:i) is the according condi-
tional PDF of the RUL estimated by (9.16).

The totalmean-squared error (TMSE) is the sumof theMSEat eachCMpoint over
the whole life cycle. If there are N observations, the TMSE of the RUL estimation
based on these observations can be calculated as

TMSE =
N∑
i=1

MSEi. (9.34)

Due to the above definition and the effect of the integral operator, MSEi is actually
a metric to characterize the accumulated estimation error between the actual RUL
and the estimated RUL described by a probabilistic distribution. This metric will be
used in the following numerical example for model comparisons.

9.5.1 Numerical Example

The purpose of this numerical example is twofold. The first is to illustrate the imple-
mentation of the proposed method by comparing the estimation results with existing
models. The second is to verify the usefulness of the proposed parameters estima-
tion algorithm. Specifically, a nonlinear Wiener process as X(t) = λta + σBB(t) is
directly considered to generate the simulation data by the so-calledEuler approxima-
tion. Hence the simulated data are generated by X(i+1)Δt = XiΔt + λa (iΔt)a−1 Δt +
σBY

√
Δt where Y ∼ N(0, 1) and Δt is the discretization step. Here, set λ = 0.05,

a = 2, σ 2
B = 0.16 and Δt = 0.1. When the threshold is w = 10.36, one simulated

path is obtained as shown in Fig. 9.1, where the FHT can be approximated as 14.8
after 148 sampling.

It can be found that there is no simple method which can transform the above
nonlinear simulation model into a linear process under the same timescale. In order
to show the superiority of the proposed approach, the following four competing
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Fig. 9.1 Comparison of the
prediction with the actual
sampling path
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models, which have been widely used in degradation modeling fields, are considered
for a comparative purpose.

(i) Model 1. It is a Wiener process with a linear drift such as X(t) = λt + σBB(t).
To achieve a fair comparison, all the sampling data are used to obtain the MLE
of λ and σB, denoted by λ̂ and σ̂B. Once these parameters are obtained, they are
fixed in the process of estimating the RUL distribution.

(ii) Model 2. This model also uses the same process as Model 1. However, at each
sampling point all the sampling data to date are used to compute the MLE λ̂ and
σ̂B, and then the estimated RUL distribution at this sampling point is obtained.
Namely, λ̂ and σ̂B are updated in a sequential fashion.

(iii) Model 3. Based on the same process as Model 1 and Model 2, the method
developed in [37] is adopted to estimate λ and σB, in which a Kalman filter and
the EM algorithm are used together.

(iv) Model 4. Here, the presented model and parameters estimation method devel-
oped in this chapter are used, but the RUL distribution is calculated by (9.8),
where the unknown parameters, λ and σB, are replaced by λ̂i and the estimate
of σB in Sect. 9.3. In this model, the PDF of the RUL is not fully dependent on
the observation history to date since this model only replaces λ with its mean
λ̂i and does not consider its distribution. Thus, this model is different from the
proposed model which calculates the RUL distribution from (9.16).

In addition, the prediction equation for degradation in Models 1–3 is x̂i = xi−1 +
λ̂ · Δt, while the prediction equation for the presented approach and Model 4 is
x̂i = xi−1 + λ̂ia (iΔt)a−1 Δt where Δt is the sampling interval and a is estimated by
the method developed in Sect. 9.3.

The one step prediction of the degradation using the proposed method is illus-
trated by Fig. 9.1. It can be seen that the proposed method can recover the degra-
dation path very well and the MSE between the predictions and the actual data is
0.0113. In contrast, the MSEs using Models 1–3 are 0.0179, 0.0175, 0.0158, respec-
tively. This shows that the presented method produces better prediction accuracy for
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Fig. 9.2 Estimated parameters μ0,P0, σ
2
B ,Q, a with the sampling data accumulated

degradation data. The evolving path of the estimated parameter vector θ , consisting
of σ 2

B , a, μ0,P0,Q, is illustrated in Fig. 9.2.
From Fig. 9.2, it is observed that the parameter estimation method developed in

Sect. 9.3workswell. In particular, the estimates ofσ 2
B and a can respectively approach

the true values 0.16 and 2 closely as the sampling data are accumulated. In addition,
λ is made be adapted to the observed data and be estimated from the Kalman filter,
but the sample mean of the estimated λ̂i based on all sampling points is 0.049 in
the simulation, which is also close to the true value 0.05. These results verify the
usefulness of the developed parameters estimation method. For the results for RUL
estimation, the comparisons with Models 1–4 are shown in Fig. 9.3 from the 144th

sampling point to the 147th point.
It can be seen from Fig. 9.3 that the proposed method has obvious advantage over

linear Wiener process-based Models 1–3 and Model 4 that does not consider the
observation history. In particular, the estimated PDF of the RUL from the presented
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Fig. 9.3 Comparative results of the proposed method with Models 1–4 in RUL estimation (the
asterisk denotes the end of life)

method is much tighter than other competing models. This is the desired result since
all the data have been used for estimating the RUL in the proposed approach and
all model parameters can be updated once new observation is available. Thus, the
uncertainty in the estimated RUL can be reduced naturally.

To further compare the performance of the proposed method against Models 1–4,
the MSE and TMSE about the RUL associated with these models are calculated. The
evolving paths of the MSE at each observation point for all methods are shown in
Fig. 9.4. Note that only the results of the last 88 observation points (i.e., from the
61th sampling point to the 148th point) are plotted since Fig. 9.2 indicates that the
changes of the estimation will be smaller after the 60th observation point.

From Fig. 9.4, it is found that the proposed method maintains the MSE of the
RUL estimation in a relatively low level compared with linear Wiener process based
Models 1–3 and approaches a smallMSEmore quickly thanModels 1–3. In addition,
the proposed method avoids the abrupt change of MSE occurring in Model 4 since
the presented method fully uses the observation history. Furthermore, the TMSEs
of the presented method and Models 1–4 are 249.2, 1789.4, 2348.3, 910.8, 513.4,
respectively. Obviously, the presented method has the least TMSE and thus has a
better RUL estimation using the measure MSE than the competing models.
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Fig. 9.4 Comparative results of the proposed method with Models 1–4 in MSE of the RUL

9.5.2 Lithium-Ion Battery Life Prognosis

In this experiment, the presentedmethod is applied for RUL estimation of lithium-ion
batteries to demonstrate the effectiveness. The used degradation datasets are provided
by the NASA Ames Prognostics Center of Excellence [56]. In the used dataset, a
set of four lithium-ion batteries (#5, #6, #7 and #18) were run through three dif-
ferent operational profiles (charge, discharge, and impedance) at room temperature.
Charging was carried out in a constant current mode at 1.5A until the battery voltage
reached 4.2V and then continued in a constant voltage mode until the charge current
dropped to 20mA. Discharge was carried out at a constant current level of 2A until
the battery voltage fell to 2.7, 2.5, 2.2, and 2.5V for batteries #5, #6, #7, and #18
respectively. Impedance measurement was carried out through an electrochemical
impedance spectroscopy frequency sweep from 0.1Hz to 5kHz. Repeated charge
and discharge cycles result in accelerated aging of the batteries while impedance
measurements provide insight into the internal battery parameters that change as
aging progresses. Based on the analysis of the available performance measures of
the Lithium-ion batteries, the capacity can be used to characterize the long-term
degradation process induced by the charge-discharge operational cycle [56–58]. The
experiments were stopped when the batteries reached end-of-life criteria, which was
a 30% fade in rated capacity (from 2 to 1.4Ah). The capacity data of four batteries
are illustrated in Fig. 9.5. In this case, the lifetime of battery #5 is about 125 cycles
when the failure threshold is 1.4Ah.
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Fig. 9.5 Degradation paths and predicted paths of four batteries

Figure9.5 shows that the degradation signals of batteries experience a lot of fluc-
tuations. In physics, Brownian motion process aims at modeling the movement of
small particles in fluids and air with tiny fluctuations. The tiny increase or decrease in
degradation over a small time interval behaves similarly to the random walk of small
particles in fluids and air. In addition, it is observed that the degradation path of bat-
tery exhibits a trend with variable degradation rate. Thus, a degradation model with
a time-varying degradation rate could be suitable. All these observations encourage
that the type of stochastic processes in (9.1), driven by BM with a nonlinear drift,
is appropriate to characterize the path of the battery degradation process. Therefore,
the presented model (9.1) is used to analyze the batteries data in this chapter.

For comparative purpose, this chapter also considers the case that the power law
model is directly fitted to the battery data, termed as Model 5. In Model 5, the
parameters are estimated by a Bayesian method as [40] and the lifetime is estimated
by formulating the distribution of the degradation quantity as [29]. In order to verify
the presented method, this chapter first fits the four batteries data to the presented
model and compare the fitting accuracy with Models 1–5 in Sect. 9.5.1. Note that
the proposed method is derived based on the case that the degradation process has
an increasing trend. However, the capacity of the battery has a decreasing trend
over time. Thus, to apply the proposed method, the original data are transformed
by make the initial capacity minus all the capacity data of battery. Accordingly,
the critical failure threshold should be changed as the initial capacity minus 1.4Ah.
Based on the transformed batteries data, the predicted paths of the batteries capacity
by the proposed method can be obtained after the inverse transformation, which are
illustrated in Fig. 9.5. For battery #5, the MSEs between the predicted degradation
and the actual degradation for the presented method and Models 1–5 are 1.03E-4,
1.92E-4, 1.65E-4, 1.62E-4, 1.53E-4, 1.58E-4, respectively. This shows the better
accuracy in the degradation prediction of the developed method. Accordingly, the



9.5 Numerical Example and Case Study 267

0 20 40 60 80 100 120 140 160
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
x 10 −6

Cycle time (cycle)

Es
tim

at
ed

 P
0

0 20 40 60 80 100 120 140 160
0

0.005

0.01

0.015

0.02

0.025

0.03

Cycle time (cycle)

Es
tim

at
ed

μ 0

0 20 40 60 80 100 120 140 160
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
x 10 −3

Cycle time (cycle)

Es
tim

at
ed

σ B2

0 20 40 60 80 100 120 140 160
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
x 10 −5

Cycle time (cycle)

Es
tim

at
ed

 Q

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Cycle time (cycle)

Es
tim

at
ed

 a

Fig. 9.6 Estimated parameters μ0,P0, σ
2
B ,Q, a with the data of Battery #5

estimated parameters evolving with the cycle for battery #5 are shown in Fig. 9.6. It
is observed from Fig. 9.6 that, as the battery degradation data are accumulated, the
model parameters will converge quickly. In addition, if there are some great changes
in the degradation data, the estimated parameters can reflect such data changes as
expected (see σ 2

B , Q, and a for examples). These observations reflect the adaptive
ability of the developed parameters estimation algorithm.

Based on the updated model parameters, the degradation signals of the bat-
tery capacity are further used for estimating the RUL of batteries. In this chapter,
the data of the battery #5 are taken for example. For comparisons, the mediums
of the RUL, the associated 95% confidence intervals (CI) and relative errors (RE)
of the estimated RUL for #5 are computed at the 30th, 60th, and 90th percentiles of the
lifetime, as summarized in Table9.1. Here, the median is chosen as an approximate
value for the point estimate of the RUL since the distribution of the RUL is often
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Table 9.1 MRUL, 95%CI, RE of the estimated parameters

30th (%) percentile 60th (%) percentile 90th (%) percentile

MRUL 95%CI RE MRUL 95%CI RE MRUL 95%CI RE

Model 1 68.8 (63.5,96.3) 21.4 39.5 (37.2,56.1) 21.0 14.2 (11.2,17.9) 13.6

Model 2 67.1 (62.4,95.8) 23.3 39.1 (35.3,57.4) 21.8 14.5 (12.1,19.4) 16.0

Model 3 69.4 (64.2,95.4) 20.7 40.8 (37.8,55.3) 18.4 13.9 (10.1,16.8) 11.2

Model 4 72.5 (69.3,92.8) 17.1 43.8 (40.2,53.5) 12.4 11.4 (9.4,14.1) 8.8

Model 5 70.2 (65.2,93.5) 19.9 42.6 (38.1,54.2) 14.8 11.2 (8.1,14.5) 10.4

Proposed
model

74.8 (71.1,91.5) 14.5 45.8 (41.3,52.1) 8.4 11.9 (10.2,13.6) 4.8

highly skewed and thus it is reasonable to use the median as a measure of central
tendency rather than the mean. In addition, let l̃i denote the actual RUL at ti, and let
l̂i be the estimated RUL by its median at ti. Then, the RE for the RUL at ti is defined

as REi =
(∣∣∣l̃i − l̂i

∣∣∣ /l̃i
)

× 100. This measure is used for model comparisons.

The results in Table9.1 indicate that all estimation results for nonlinear models are
superior to the results of linearmodels. In nonlinearmodels,Model 5 is amixed-effect
regression model while Model 4 and the presented model are stochastic process-
based models. As expected, the results imply that stochastic process-based models
are more superior in the estimation accuracy. In stochastic process-based models,
Model 4 calculates the PDF of the RUL through (9.8) and is not fully dependent on
the observation history to date since this model only replaces λ with its mean λ̂i and
does not consider its distribution. Therefore, the accuracy of the RUL estimation by
the presentedmethod ismuch improved as opposed toModels 1–5 and the superiority
of the presented method is validated.

Overall, the numerical example and case study effectively provides the supporting
evidence of the presented modeling development—nonlinear degradation modeling
and RUL estimation with the observation history dependency. On one hand, the
results demonstrate that the conventional linear Wiener process-based model cannot
give satisfactory results in the nonlinear case even though the updating mechanism
is incorporated in Model 3. But the proposed method works well. On the other
hand, the comparative results verify that incorporating the observation history to
date can improve the accuracy of the RUL estimation indeed. Both are evaluated by
the measures of MSE and TMSE.
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Chapter 10
Prognostics for Hidden and Age-Dependent
Nonlinear Degrading Systems

10.1 Introduction

10.1.1 Motivation

With the rapid development of modern condition monitoring (CM) techniques,
condition-based maintenance (CBM) which implements maintenance actions based
on the CM information has become an active research area for reducing operation
and maintenance costs. As a very important step of CBM, prognosis plays a criti-
cal role in CBM practice [1–3]. According to the available monitoring information,
the main purpose of the prognosis is to assess how long the equipment can operate
with a satisfactory reliability level from the present time, i.e., remaining useful life
(RUL). As a result, the accurate RUL estimation can provide a sufficient and effi-
cient decision support for the subsequent maintenance scheduling [4]. Besides, such
prognostic information has impacts on the other aspects of management activities,
such as spare parts provision, operational performance, the profitability of the owner
of an equipment, and the management of product reuse and recycle [5].

The traditional methods for estimating equipment lifetime depend on the time-to-
failure data or lifetime data. However, most of critical equipments and new products
are forbidden to run to failure, or the cost of obtaining the failure data through the
accelerated life test is very high. On the other hand, the equipment deteriorates over
time inevitably since it operates with certain load under various environments. In
contrast to the failure data, the stochastic degradation signals related to the health
state of the equipment can be obtained relatively easily through the CM techniques,
such as the vibration monitoring and oil analysis [6, 7]. Therefore, stochastic models
for degradation data-based RUL estimation have been studied by more and more
researchers (see a review [5]).

In general, nonlinearity and stochasticity are important factors which have to be
consideredwhen investigatingRULestimation in the framework of stochasticmodel-
ing. In literature, most of works on RUL estimation using stochastic models focused
on linear models or models that can be linearized by logarithmic [8–10] or time-scale
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transformations [11–13]. The research on RUL estimation using nonlinear models is
still very limited. Even in nonlinear case, the current research is limited to the case of
modeling the degradation as a directly observable process for a population of “iden-
tical” components [14, 15]. However, it is well-identified that hidden or partially
observable degradation process is frequently encountered in practice, because of the
complexity of the equipment, or the high cost tomonitor the degradation state directly
[5]. In addition, adaptive updating RUL estimation for a particular component in ser-
vice using the real-time data is increasingly important in recent decade. Because
utilizing the CM information to date can make the RUL estimation sharper and more
tailored to an individual component than only using the current data or not using at
all. Overall, it is fair to say that, though many approaches for RUL estimation are
available, an important and practical problem remains open, namely, how to achieve
adaptive RUL estimation for hidden and nonlinear stochastic degradation process
since nonlinearity and partial observability are commonly encountered in practice.
The consideration of this problem will make the estimation tailored to an individual
component through its real-time monitoring data which relate to its operational and
environmental characteristics. It is worth noting that the above discussions regarding
linearity and nonlinearity for degradation processes are with respect to the operation
time of the equipment, i.e., age, rather than the degradation state itself. Thus, the
term ‘nonlinear degradation process’ means ‘age-dependent nonlinear degradation
process’ in this chapter. To our knowledge, there is no report on adaptive RUL esti-
mation approach based on hidden and age-dependent nonlinear degradation process
in literature, which can provide an explicit RUL distribution. This is the primary
motivation of this chapter.

10.1.2 Related Works

There has been a significant volume of research in stochastic models to model the
degradation process for RUL estimation in the past decades, such as random coeffi-
cient regression model [14], Wiener process [15–17] and Gamma process [18–21].Si
et al. [5] classified stochasticmodels-basedRULestimation approaches into twomain
categories according to the characteristics of the degradation data: direct data-driven
methods and indirect data-driven methods. The direct data-driven methods utilize
the data which can describe the degradation state of the equipment directly. Lu and
Meeker in [14] considered the item-to-itemvariability andproposed a general random
coefficient regression model to characterize the degradation process of a population
of equipments. Along the line of [14], many extensions have appeared, such as [22,
23]. However, the random coefficient regression model can only estimate the life-
time distribution for a class of equipment. Based on the model of [14], Gebraeel et
al. [8–10] conducted many excellent works and presented some random coefficient
models focused on estimating the RUL of single unit under Bayesian framework
[24]. However, for each in-service equipment, its degradation process is generally
stochastic and uncertain in nature because of the effect of the so-called temporal
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variability [25]. The above random coefficient models do not take the temporal vari-
ability into account. Due to the temporal variability of a degradation process, it is
appropriate to adopt a stochastic process to model the degradation progression [25].
In the most recent, Si et al. [15] studied how to model the nonlinear degradation
process and presented a more general nonlinear Wiener process-based model for
RUL estimation. Based on this model, they formulated an analytical approximation
of the RUL distribution under a mild assumption instead of the monotonic assump-
tion. But they only considered that the degradation state can be observed directly
as the random coefficient regression model, and obtained the results for two spe-
cific nonlinear degradation forms. Moreover, the method of [15] cannot update the
RUL estimation in a real-timemanner for an individual operating equipment, i.e., the
parameters are estimated off-line by the historical data of a population of identical
equipments rather than an operating equipment degradation observations up to date,
and once determined, they are fixed.

The indirect data-driven methods consider that the degradation process is hidden
or partially observable but there is a stochastic relationship between the observ-
able CM variable and the actual degradation state. Therefore, the central idea of
the indirect data-driven methods is to appropriately model the hidden degradation
process and establish the relationship between the observable CM data and the hid-
den degradation state. Among various models for establishing such relationship, the
state-space model is an efficient approach since it can describe both the hidden state
of the equipment and the uncertain relationship between the hidden state and the
direct observation. Furthermore, using state-space model can realize real-time esti-
mation naturally according to the updating and prediction equations. There are many
researches on using the state-space model to estimate the RUL. However, most of
the literature only considered that the hidden degradation process evolved linearly
over time or assumed that both the state equation and the observation equation fol-
lowed a linear formulation [26–31]. For example, Xu et al. [26] proposed a real-time
reliability prediction method for a dynamic system, and they adopted the Brownian
Motion (BM) with linear drift to model the hidden state. Zhou et al. [31] utilized
the BM with drift as the hidden degradation process, and established the state-space
model to estimate the RUL of the equipment. But, they only considered the BM
with a linear drift. We know that nonlinearity exists extensively in practice and the
linear model cannot characterize the dynamic of such a degradation process. How-
ever, there is scarce literature appeared for nonlinear cases. The main cause for such
scarcity is that it is rather difficult to obtain the analytical form of the probability
density function (PDF) of the RUL for the nonlinear case. But, in the context of
CBM, it is necessary and valuable to derive the PDF of the RUL with an analytical
form so as to provide rapid real-time RUL estimation for the subsequent mainte-
nance scheduling. Cadini et al. [32] considered that the hidden fatigue crack growth
process was nonlinear and non-Gaussian. They employed the state-space model and
particle filter to estimate the RUL of the equipment. Similar idea can also be found
in [33, 34], where particle filter was used to predict the hidden degradation state.
However, particle filter is a Monte Carlo-based approach, and thus only numerical
result of the estimated RUL distribution can be obtained and the heavy computation
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may be incurred in most cases. In addition, these researches assumed that the model
parameters were known or fixed once determined by the historical data. Zhou et al.
[18] proposed a Gamma process-based state-spacemodel to estimate the RUL for the
nonlinear and hidden degradation process, where the RUL was estimated by Monte
Carlo method and the unknown parameters were estimated through Expectation
Maximization (EM) algorithm. But they did not concern the updating issue for para-
meters and the explicit RUL distribution cannot be obtained due to the Monte Carlo
nature of their method. Similar state-space model also appeared in [19]. Actually,
Gamma process based models are only appropriate to represent strictly monotonic
degradation processes. However, In many engineering practices, a non-monotonic
degradation process, e.g., as a result of minor repair or a reduced intensity of use [35],
can provide a good description of the system’s behavior, such as rotating bearings
[8], bridge beam degradation [12], drift coefficient in an inertial navigation platform
[15], the LED lamps [36], the Carbon-film resistor [37], etc. More importantly, since
the Gamma distribution is very complicate, most literature utilizes the numerical
simulation methods to estimate the RUL.

From the above survey over the relatedworks, we can observe that the issues about
how to model the hidden and nonlinear degradation process for RUL estimation and
how to formulate the analytical form of the RUL distribution have not been well
solved. This leads to the first goal of this chapter, i.e., to develop a state-space-based
prognostic model for RUL estimation, in which the hidden degradation process is
modeled by a nonlinear state equation, and the relationship between the hidden state
and the measurement is characterized by an observation equation, to derive the RUL
distribution. As far as we know, real-time RUL estimation is desirable in practice so
that the RUL of monitored equipment is repeatedly updated during its operation to
ensure the most recently calculated RUL value accurately reflects the current reality
of the equipment. This consists of our second objective.

10.1.3 Main Works of This Chapter

In this chapter, motivated by the above observations, we use a nonlinear drift-based
BM to characterize the nonlinearity of the hidden degradation state. Since the state
is hidden, we construct a state-space model by linking the hidden state with the
measurement and utilize the Extended Kalman Filter (EKF) and the EM algorithm
jointly to evaluate the degradation state and the unknown parameters. Then, we
incorporate the distribution of the estimated state from the measurements into the
RUL estimation and derive the parameterized analytical form of the RUL distribution
approximately. As a result, we can re-estimate the parameter and the state once the
new observation data are available. Accordingly, we can update the RUL distribution
in line with newly available data and realize real-time RUL estimation.

Our work is different from the previous works, such as [8, 11, 12, 14, 15, 18],
and [26] in several major aspects: (1) we explicitly consider the effect of hidden
degradation and incorporate the uncertainty of the hidden state estimation from the
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measurements into the RUL estimation, thus we account for both the uncertainty in
degradation process and the uncertainty of the state estimation; (2) under the condi-
tion that the degradation is hidden, we consider a general age-dependent nonlinear
degradation model and obtain the analytical approximation of the RUL distribution,
which is free of the assumptions that the degradation process is linear or can be
linearized by logarithmic or time-scale transformations; (3) the real-time RUL esti-
mation can be realized by re-estimating the model parameters and the hidden state
jointly with the incoming new data, in which the uncertainty of the estimation for
hidden state is incorporated into the updated RUL distribution.

Finally, we provide a numerical example and a practical case study for NASA bat-
tery to illustrate the application of the developed approach. With simulated/realistic
data, we analyze and compare the RUL estimation results of the developed approach
with the results of linear model. Particularly, we consider three different kinds of
nonlinear degradation functions, which are often used in literature. In the case study,
we utilize the Akaike information criterion (AIC) and mean squared error (MSE)
as measures to determine the most appropriate nonlinear model by comparing the
fitness to the monitoring data. In contrast with the linear model, it is found that our
proposed method is superior to the linear model in terms of both the AIC and the
MSE.

The chapter is organized as follows: In Sect. 10.2, we formulate the problem
and derive the RUL distribution. Section10.3 develops the parameter estimation
approach. Section10.4 provides several illustrative examples of theoretical results. In
Sect. 10.5, a numerical example is provided to demonstrate the approach. Section10.6
gives a case study on a NASA battery set to show the effectiveness of our proposed
approach.

10.2 Problem Formulation and RUL Estimation

10.2.1 Problem Formulation

Now let us consider a dynamic system in which the hidden degradation state at time
t is denoted by X (t). In this chapter, we describe the hidden degradation process as
an unobservable BM with nonlinear drift, i.e.,

X (t) = X (0) +
∫ t

0
μ(τ ;ϑ) dτ + σB B(t) (10.1)

where X (0) denotes the initial state and is assumed to be zero, which is frequently
used in literature.

∫ t
0 μ(τ ;ϑ) dτ and σB are the drift part and diffusion coefficient,

respectively; B(t) is the standard BM. Here we assume that (10.1) satisfies the regu-
larity conditions that guarantee a weakly unique global solution [38]. From the above
degradation model, we can find that if μ(τ ;ϑ) is a nonlinear function with t and
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unknown parameter vector ϑ , the model can capture the nonlinear characteristics
of the degradation process. Moreover, it can contain various nonlinear processes by
selecting the different forms of μ(τ ;ϑ). If

∫ t
0 μ(τ ;ϑ) dτ = ηt , (10.1) will reduce

to the traditional BM with constant drift which has been widely used to model the
degradation process with the linear path.

Before proceeding to the construction of themeasurement equation in the dynamic
system, a few remarks about the model for the nonlinear degradation process are
summarized as follows.

Remark 10.1 The term “nonlinear” here means the hidden degradation state evolves
nonlinearly over time and the mean degradation path is a nonlinear function of time
t , i.e., age, rather than the state X (t). Thus, the term ‘nonlinear degradation process’
means ‘age-dependent nonlinear degradation process’ in this chapter. For the age-
dependent or age-and state-dependent degradation process modeling, The interested
reader may refer to [39–42].

Remark 10.2 In literature on degradation modeling, many researches assumed that
the nonlinear process can be linearized approximately by some kinds of transfor-
mations on the degradation data, such as log-transformation [8–10] or time-scale
transformation [11–13]. However, not many nonlinear degradation processes can be
transformed to be nearly linear in these ways. Rather, our model can characterize the
general nonlinear degradation process directly without the use of the transformations
mentioned above. If the nonlinear degradation process cannot be transformed to a
linear degradation by manipulating the data, our model would be particularly useful.

Themeasurement equation in the dynamic systemwhichdescribes the relationship
between the observable measurement obtained from the available sensors and the
hidden degradation state is formulated as

Y (t) = g(X (t); ξ) + ε(t) (10.2)

where g(X (t); ξ) is a nonlinear function of X (t)with the unknown parameter vector
ξ , and ε(t) is assumed to be independent and identically distributed with ε(t) ∼
N (0, σ 2) at any time point t . It is further assumed that ε(t) and B(t) are mutually
independent.

For deriving the RUL estimation according to the constructed state-space model
(1) and (2), we adopt the concept of the first hitting time (FHT) to define the lifetime
and then proceed to deducing the RUL. The lifetime can be interpreted as the FHT of
the degradation state to a threshold level [43]. This definition of lifetime according to
the FHTmay be considered to be restrictive to some cases, since the degradationmay
go back after the first crossing the threshold. However, for the critical equipment,
whose failure may lead to severe consequence to the equipment, or to the human, or
even to the environment, once the degradation process X (t) is equal to or beyond
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the predefined threshold level, the equipment will be considered to be failed and has
to be repaired. According to the concept of FHT, the lifetime T can be defined as

T = inf{t : X (t) ≥ ω | X (0) < ω} (10.3)

where ω is the predefined threshold level.

10.2.2 RUL Estimation

Asdefined in (10.3),we can observe that the key issue to estimate theRUL in the sense
of the FHT is to derive the PDF of T , i.e., fT (t). Under the monotone assumption of
degradation process, the lifetime distribution FT (t) can be formulated

FT (t) = Pr(T ≤ t) = Pr(X (t) ≥ ω). (10.4)

then a simple FHT model can be directly obtained. However, for the BM-based
models, the degradation path is not monotonic so the simple model cannot be used,
or if used can only be considered as a crude approximation.

As stated in [15], the distribution of the FHT for a nonlinear-drifted diffusion
process is related to solving the Fokker–Planck–Kolmogorov (FPK) equation with
boundary constraints. This task is rather difficult. Thus, they first utilized a well-
known time-space transformation on the model to calculate the FHT distribution of
a standard BM crossing a time-dependent boundary instead of solving this problem
from the nonlinear-drifted BM crossing a constant threshold. Then, in such case, they
obtained an analytical approximation of the distribution of the FHT in a closed form
under a mild assumption compared with the monotone assumption. Following [15],
we make the following assumption to derive the approximated distribution of T .

Assumption: If the degradation process is hitting the threshold at a certain time
t exactly, then the probability that such a process crossed the threshold level before
time t is assumed to be negligible.

The above assumption implies that the process can hit the threshold before t or
go back below the threshold after t , but this is just assumed to be a small probability.
Thus, the above assumption is different from the monotone assumption. As for the
validation of the above assumption, Si et al. [15] performed extensive simulations
and thus we will not discuss this issue here. Based on the above assumption, the
following lemma can be established.

Lemma 10.1 For the degradation process {X (t), t ≥ 0}, if μ(t;ϑ) is a continuous
function of time t in [ 0,∞), then the PDF of the FHT defined in (10.3) can be
approximated with an explicit form as

fT (t) ≈ 1√
2π t

(
SB(t)

t
+ 1

σB
μ(t;ϑ)

)
exp

(
− S2B(t)

2t

)
(10.5)
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where SB(t) denotes the time-dependent boundary corresponding to the standard
BM, and

SB(t) =
(

ω −
∫ t

0
μ(τ ;ϑ) dτ

)/
σB . (10.6)

The proof of Lemma 7.1 has been presented in Chap.7. It is not difficult to verify that
the obtained PDF of the lifetime T in Lemma10.1 can cover the FHT distribution
of the linear model and Brownian motion with zero drift. This is important since
the exact results for the linear case and zero drift case exist and the nonlinear model
should go back to these cases. However, the results derived from (10.4) cannot be
consistent with the exact results for these two special cases. This further brings out
the usefulness of our assumption and the derived result. We summarized the detailed
comparisons of our results with the results obtained by (10.4) in Sect. 10.2.3.

We have already obtained the PDF of the lifetime through Lemma 10.1, and
now for formulating the PDF of the RUL at the i th monitoring point ti > 0 by
incorporating the real-timedegradation state X (ti ),wefirst give the following remark.

Remark 10.3 Suppose that the degradation state at i th monitoring point ti is X (ti ).
Intuitively, the RUL at ti is equal to the FHT of a new stochastic process {G(li ), li ≥
0} crossing the threshold ωti = ω − X (ti ) by proper time shifts and threshold shifts,
where the new stochastic process can be written as

G(li ) = X (li + ti ) − X (ti )

= G(0) +
∫ li

0
μ′(τ ;ϑ) dτ + σB B(li ), li ≥ 0 (10.7)

where G(0) = 0,
∫ li+ti
ti

μ(τ ;ϑ) dτ = ∫ li0μ′(τ ;ϑ) dτ and li = t − ti denotes the real-
ization of the RUL at the time ti if t is the FHT of the degradation model
{X (t), t ≥ ti }.

According to Remark 10.3 and Lemma 10.1, the PDF of the FHT of G(li ) is

fLi (li |ϑ, X (ti ),Y1:i ) ≈ 1√
2πli

[
ω − X (ti ) − ∫ li0μ′(τ ;ϑ) dτ

σBli

+ μ′(li ;ϑ)

σB

]
· exp
⎡
⎢⎣−
(
ω − X (ti ) − ∫ li0μ′(τ ;ϑ) dτ

)2
2σ 2

Bli

⎤
⎥⎦, (10.8)

where fLi (li |ϑ, X (ti ),Y1:i ) denotes the approximate PDF of the FHT of {G(li ), li ≥
0} crossing the threshold ωti .

However, the degradation state X (ti ) at time ti is unobservable and the accurate
value is impossible to be known. Thus, we cannot directly use the degradation state,
and instead we have to estimate the distribution of X (ti ) at time ti .

http://dx.doi.org/10.1007/978-3-662-54030-5_7
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To identify the degradation state in the dynamic system, the state andmeasurement
equations should be converted into the discrete time equations to facilitate the state
estimation once the new observations are available at the CMpoint. For convenience,
let h(t;ϑ) denote

∫ t
0 μ(τ ;ϑ) dτ . Then, we can obtain the transformed dynamic

system equations at the discrete time point tk = kΔt, k = 1, 2, . . . as

Xk = Xk−1 + h(tk;ϑ) − h(tk−1;ϑ) + σB

√
Δt ωk, (10.9a)

Yk = g(Xk; ξ) + συk, (10.9b)

where Δt is the discretization step, Xk = X (tk) and Yk = Y (tk) denote the state and
the measurement at time tk , respectively. {ωk}k≥1 and {υk}k≥1 are independent and
identically distributed (i.i.d.) noise sequences, respectively. Furthermore, we assume
that ωk ∼N (0, 1) and υk ∼N (0, 1). According to the established model (10.9),
we utilize the EKF to estimate the hidden degradation state. First, we define
X̂k|k = E(Xk |Y1:k) and Pk|k = Var(Xk |Y1:k) as the expectation and variance of Xk

that is conditional on the measurement history available until the current point,
respectively, where Y1:k � {Y1,Y2, . . . ,Yk}. We also define X̂k|k−1 = E(Xk |Y1:k−1)

and Pk|k−1 = Var(Xk |Y1:k−1) as the one-step predicted expectation and variance,
respectively. Then, to apply the EKF, g(Xk; ξ) is linearized at X̂k|k−1:

g(Xk; ξ) ≈ g(X̂k|k−1) + g′
k|k−1(Xk − X̂k|k−1), (10.10)

where g′
k|k−1 is the derivative of g(Xk, ξ) at Xk = X̂k|k−1. Now we directly give the

final formulation and omit the derivation process which can be found in [44, 45].

• Extended Kalman filtering algorithm

For k = 1, 2, . . . , i , the filtering formulation can be summarized as

X̂k|k−1 = X̂k−1|k−1 + h(tk;ϑ) − h(tk−1;ϑ),

X̂k|k = X̂k|k−1 + K (k)[Yk − g(X̂k|k−1)],
K (k) = Pk|k−1 · g′

k|k−1 · [(g′
k|k−1)

2Pk|k−1 + σ 2]−1,

Pk|k−1 = Pk−1|k−1 + σ 2
BΔt,

Pk|k = Pk|k−1 − K (k) · g′
k|k−1 · Pk|k−1.

Applying the EKF algorithm, after obtaining the PDF of X (ti ) conditional on the
measurement sequence Y1:i up to ti , i.e., Xi ∼N (X̂i |i , Pi |i ), the RUL distribution at
time ti can be derived with the estimated X (ti ). In order to facilitate the derivation
of the RUL distribution, we first give the following lemma.

Lemma 10.2 If ρ ∼ N (μ, σ 2), and ω1, ω2, α, β ∈ R, γ ∈ R
†, then the following

holds
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Eρ

[
(ω1 − αρ) exp

(
− (ω2 − βρ)2

2γ

)]

=
√

γ

β2σ 2 + γ

(
ω1 − α

βσ 2ω2 + μγ

β2σ 2 + γ

)
exp

(
− (ω2 − βμ)2

2(β2σ 2 + γ )

)
. (10.11)

Proof If ρ ∼ N (μ, σ 2), then we have

Eρ

[
(ω1 − αρ) · exp

(
− (ω2 − βρ)2

2γ

)]
= ω1 I1 − α I2,

where

I1 = Eρ

[
exp

(
− (ω2 − βρ)2

2γ

)]
, I2 = Eρ

[
ρ exp

(
− (ω2 − βρ)2

2γ

)]
.

So, we can derive I1 as follows:

I1 = 1√
2πσ 2

∫ ∞

−∞
exp

[
− (ω2 − βρ)2

2γ

]
exp

[
− (ρ − μ)2

2σ 2

]
dρ

= 1√
2πσ 2

∫ ∞

−∞
exp

[
− (ω2 − βρ)2

2γ
− (ρ − μ)2

2σ 2

]
dρ

= 1√
2πσ 2

exp

[
−σ 2ω2

2 + γμ2

2σ 2γ

]∫ ∞

−∞
exp

[
−ρ2 − 2ϕρ

ψ

]
dρ

=
√

ψπ√
2πσ 2

exp

[
−σ 2ω2

2 + γμ2

2σ 2γ

]
exp

(
ϕ2

ψ

)

=
√

γ

β2σ 2 + γ
exp

[
− (ω2 − βμ)2

2(β2σ 2 + γ )

]

with ϕ = σ 2βω2 + γμ

β2σ 2 + γ
, ψ = 2σ 2γ

β2σ 2 + γ
.

Similarly, I2 can be formulated as follows:

I2 = 1√
2πσ 2

∫ ∞

−∞
ρ exp

[
− (ω2 − βρ)2

2γ

]
exp

[
− (ρ − μ)2

2σ 2

]
dρ

= 1√
2πσ 2

exp

[
−σ 2ω2

2 + γμ2

2σ 2γ

]

· exp
(
ϕ2

ψ

)∫ ∞

−∞
ρ exp

[
− (ρ − ϕ)2

ψ

]
dρ

(ρ−ϕ)/
√

ψ =φ========= 1√
2πσ 2

exp

[
−σ 2ω2

2 + γμ2

2σ 2γ
+ ϕ2

ψ

]
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·
∫ ∞

−∞
(ϕ + φ

√
ψ) exp(−φ2) dφ

=
√

ψ√
2πσ 2

exp

[
−σ 2ω2

2 + γμ2

2σ 2γ
+ ϕ2

ψ

]
ϕ
√

π

= ϕ ·
√

γ

β2σ 2 + γ
exp

[
− (ω2 − βμ)2

2(β2σ 2 + γ )

]

= ϕ · I1.

Finally, we can obtain

Eρ

[
(ω1 − αρ) · exp

(
− (ω2 − βρ)2

2γ

)]

= (ω1 − αϕ)I1

=
√

γ

β2σ 2 + γ

(
ω1 − α

βσ 2ω2 + μγ

β2σ 2 + γ

)
exp

[
− (ω2 − βμ)2

2(β2σ 2 + γ )

]
.

This completes the proof.

Based on Lemma 10.2, we give the following theorem.

Theorem 10.1 Under the same conditions as Lemma 10.1, if the degradation
process X (t) is hidden, then the PDF of the RUL can be formulated at time ti with
the estimated X (ti ) conditional on the measurement sequence {Y1,Y2, . . . ,Yi } as

fLi (li |θ,Y1:i ) ≈ 1√
2πl2i (Pi |i + σ 2

Bli )

[
ω − λ(li ;ϑ) + liμ(li + ti ;ϑ)

− Pi |i (ω − λ(li ;ϑ)) + X̂i |iσ 2
Bli

Pi |i + σ 2
Bli

]
exp

(
− (ω − λ(li ;ϑ) − X̂i |i )2

2(Pi |i + σ 2
Bli )

)
(10.12)

where λ(li ;ϑ) = h(li + ti ;ϑ) − h(ti ;ϑ), θ is the unknown parameter vector of the
state-space model, X̂i |i and Pi |i are the estimated expectation and variance of X (ti ),
respectively.

Proof It is easy to verify that {G(li ), li ≥ 0} satisfies all the conditions of Lemma
10.1. So we directly derive

μ′(li ;ϑ) = μ(li + ti ;ϑ),

SB(li ) = 1

σB
[ωti − (h(li + ti ;ϑ) − h(ti ;ϑ))].
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Substituting the above equations into (10.8), we have

fLi (li |θ, X (ti ),Y1:i ) =
1√

2πσ 2
Bl

3
i

[ω − λ(li ;ϑ) + liμ(li + ti ;ϑ) − X (ti )]

· exp
[
− (ω − λ(li ;ϑ) − X (ti ))

2

2σ 2
Bli

]
, (10.13)

where λ(li ;ϑ) = h(li + ti ;ϑ) − h(ti ;ϑ).
Suppose the evaluated mean and variance of X (ti ) are X̂i |i and Pi |i at ti , respec-

tively. Then we can obtain X (ti ) ∼ N (X̂i |i , Pi |i ). Let p(xi |Y1:i ) denote the PDF of
X (ti ) conditional on the available observationsY1:i . Using the law of total probability,
we can obtain

fLi (li |θ,Y1:i )

=
∫ ∞

−∞
fLi (li |θ, X (ti ),Y1:i )p(xi |Y1:i ) dxi

=EX (ti )|Y1:i
{
fLi (li |θ, X (ti ),Y1:i )

}

= 1√
2πσ 2

Bl
3
i

EX (ti )|Y1:i

{
[ω − λ(li ;ϑ) + liμ(li + ti ;ϑ) − X(ti )]

· exp
[
− (ω − λ(li ;ϑ) − X (ti ))

2

2σ 2
Bli

]}
. (10.14)

According toLemma10.2, letα = 1,β = 1,γ = σ 2
Bli ,ω1 = ω − λ(li ;ϑ) + liμ(li +

ti ;ϑ), ω2 = ω − λ(li ;ϑ), and then we obtain (10.12). This completes the proof of
Theorem 10.1.

10.2.3 Comparative Discussions

We summarized the detailed comparisons of our results with the results obtained
under the monotonic assumption as specified in Eq. (10.4) of the original version for
reference.

In literature, many current researches define the lifetime T as we define in
Eq. (10.3) of the original version, i.e. T = inf{t : X (t) ≥ ω | X (0) < ω}, but they
obtained the lifetime distribution by

F(t) = Pr(T ≤ t) = Pr(X (t) ≥ ω). (10.15)
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The last equation is achieved by the monotone assumption of degradation process
X (t). This implies that the process can only hit the threshold once and cannot go back.
However, for BM-based models, the degradation path is not monotonic so the simple
model cannot be used, or if used can only be considered as a crude approximation.
In our chapter, we do not assume that degradation process is monotonic and we just
say the probability of hitting the threshold before t is small enough. Our hitting time
is not the FHT but close. This allows the degradation process be non-monotonic and
is consistent with the characteristics of diffusion process.

In fact, there are two advantages to utilize our assumption compared with the
monotonic assumption. First, in the deriving the lifetime distribution, we actually
used the process information before t . Look at Eq. (10.9) in this supplemental mate-
rial,

b(t) = lim
s→t

(t − s)−1 · EW (s)|W (t) [I (s,W )(S(s) − W (s))|W (t) = S(t)] .

Because there is no transformation in time scale and so the time scale in the X (t) and
the transformed process is the same. Therefore, in Eq. (10.9), using the information
before t is equivalent to use the process information of X (t) before t . However,
applying F(t) = Pr(X (t) ≥ ω) to approximate the lifetime, only the degradation
X (t) at time t is used. In this sense, our model can utilize more information. Second,
the obtained PDF of the lifetime T of our model can cover the FHT distribution of
the linear model and Brownian motion with zero drift. Now, for comparison, we give
the derivation of lifetime distribution under the monotone assumption. According to
Eq. (10.15), the cumulative distribution function (CDF) is

Pr(T ≤ t) = Pr(X (t) ≥ ω) = 1 − Φ

(
ω; h(t;ϑ),

√
σ 2
Bt

)
(10.16)

where h(t;ϑ) = ∫ t0 μ(τ ;ϑ) dτ , and the PDF of the lifetime is

fT (t) = − d

dt
Φ

(
ω; h(t;ϑ),

√
σ 2
Bt

)

= − d

dt
Φ

⎛
⎝ω − h(t;ϑ)√

σ 2
Bt

; 0, 1
⎞
⎠

= − 1√
2π

exp

[
− (ω − h(t;ϑ))2

2σ 2
Bt

]
· d

dt

ω − h(t;ϑ)√
σ 2
Bt

. (10.17)

Since

d

dt

ω − h(t;ϑ)√
σ 2
Bt

= 1

σB
·
[
0.5h(t;ϑ) − 0.5ω

t3/2
− μ(t;ϑ)√

t

]
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we have

fT (t) = 1

σB

√
2π

[
0.5ω − 0.5h(t;ϑ)

t3/2
− μ(t;ϑ)√

t

]
· exp
[
− (ω − h(t;ϑ))2

2σ 2
Bt

]
.

(10.18)

Take one of the three cases in case study: μ(t;ϑ) = abtb−1 for an example, under
the monotone assumption, the PDF of the lifetime can be written as

fT (t) = 0.5ω − atb(0.5 − b)

σB

√
2π t3

exp

[
− (ω − atb)2

2σ 2
Bt

]
. (10.19)

When b = 1, we have

fT (t) = 0.5ω + 0.5at

σB

√
2π t3

exp

[
− (ω − at)2

2σ 2
Bt

]
, (10.20)

and when b = 0, we have

fT (t) = 0.5ω − 0.5a

σB

√
2π t3

exp

[
− (ω − a)2

2σ 2
Bt

]
. (10.21)

Clearly, these results cannot be consistent with the exact results for the linear model
and BM with zero drift. However, under our assumption, when b = 1, from Eq.
(10.35), the PDF of the lifetime can be formulated as

fT (t) = ω

σB

√
2π t3

exp

[
− (ω − at)2

2σ 2
Bt

]
, (10.22)

which is exactly the PDF of the lifetime of the process X (t) = at + σB B(t), known
as the inverse Gaussian distribution; when b = 0, we have

fT (t) = ω − a

σB

√
2π t3

exp

[
− (ω − a)2

2σ 2
Bt

]
, (10.23)

which is exactly the PDF of the lifetime of the process X (t) = a + σB B(t).
Therefore, our method can cover the existing results for linear model or zero drift

model. This is important since the exact results for the mentioned special cases exist
and the nonlinear model should go back to the linear case if used for the linear case.

In order to show the usefulness of Theorem 10.1, we provide the specific results
for several frequently used nonlinear functions in supplementary material. These
results are obtained through applying Theorem 10.1 and will be applied in the case
study for comparative studies.
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10.3 Parameter Estimation

In the above section, we have already derived the PDF of the RUL at time ti incor-
porating the estimated distribution of the degradation state X (ti ) and the observation
history up to ti . Since the model parameters are unknown, we need to estimate them
based on the available observations up to the current time. For convenience, we define
the observable measurement and hidden degradation state sequences until the current
time ti as

Y1:i � {Y1,Y2, . . . ,Yi }, X1:i � {X1, X2, . . . , Xi }. (10.24)

Besides, we denote θ = [ϑ, ξ , σB, σ ] as the unknown parameter vector. As a solu-
tion strategy, we employ the Maximum Likelihood Estimation (MLE) approach to
calculate and update the estimation of the parameter θ once the new observation data
are available. In such case, the MLE with respect to the available measurements is
computed as

θ̂
ML = argmax

θ
L(Y1:i |θ) = argmax

θ
log p(Y1:i |θ) (10.25)

where L(Y1:i |θ) is the log-likelihood function and p(Y1:i |θ) denotes the joint PDF of
the observations Y1:i which is parameterized by θ . Then using the definition of the
conditional probability, the log-likelihood function can be written as

L(Y1:i |θ) = log

⎛
⎝p(Y1|θ)

i∏
j=2

p(Y j |Y1: j−1, θ)

⎞
⎠

=
i∑

j=2

log p(Y j |Y1: j−1, θ) + log p(Y1|θ). (10.26)

The MLE of the unknown model parameters can be computed in many standard
methods such as Newton’s method or one of its related variants [45]. However,
it is difficult to estimate the unknown parameter θ because of the unobservable
degradation states. In this chapter, the EM algorithm is used to estimate θ , which
provides a framework to solve the MLE problem in the presence of the hidden
states. By iteratively computing and maximizing the conditional expectation of log-
likelihood function consisting on a complete data (X1:i ,Y1:i ), the EM algorithm
can generate a sequence of parameter estimates which converge to the MLE of the

parameters [45]. Let θ̂
( j)

denote the estimation of the parameter θ from the j th
iteration of the EM algorithm and E

θ̂
( j){·|Y1:i } denote the conditional expectation
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operator with respect to a probability density function determined by θ̂
( j)
. Then, the

conditional expectation of the complete data log-likelihood function can be written
as

Q(θ, θ̂
( j)

) =E
θ̂

( j){[L(X1:i ,Y1:i |θ)]|Y1:i }
=E

θ̂
( j){[log p(X1:i ,Y1:i |θ)]|Y1:i }, (10.27)

where L(X1:i ,Y1:i |θ) = log p(X1:i ,Y1:i |θ) is the complete data log-likelihood func-
tion. The more details can be found in [45, 46]. In sum, the parameter estimation
procedure consists of the following two steps:

(1) E-step

Calculate: Q(θ , θ̂
( j)

) ; (10.28)

(2) M-step

Compute: θ̂
( j+1) = argmax

θ
Q(θ, θ̂

( j)
) . (10.29)

The above steps are iteratedwith an initial guess θ̂
(0)

until the criterion of convergence
is satisfied.

For our model, according to the definition of multiplication formula of the condi-
tional probability and theMarkov property associated with themodel (10.9), the joint
log-likelihood function of both the measurement sequence Y1:i and the degradation
state sequence X1:i until current time ti can be formulated as

L(X1:i ,Y1:i |θ)

= log p(X1:i ,Y1:i |θ) = log

[
i∏

k=1

p(Xk |Xk−1;θ)

i∏
k=1

p(Yk |Xk;θ)

]

= − i log(2π
√

Δt) − i log σB − i log σ − 1

2σ 2

i∑
k=1

[
Yk − g(Xk; ξ)

]2

− 1

2σ 2
BΔt

i∑
k=1

[
Xk − Xk−1 − (h(k;ϑ) − h(k − 1;ϑ))

]2
, (10.30)

where h(k;ϑ) denotes h(tk;ϑ) in (10.9a) for convenience.
The next step is to compute the conditional expectation of the complete data log-

likelihood function, i.e., Q(θ, θ̂
( j)

) = E
θ̂

( j){[log p(X1:i ,Y1:i |θ)]|Y1:i }. Specifically,
we have
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Q(θ , θ̂
( j)

) ∝

− i log σB − i log σ − 1

2σ 2

i∑
k=1

E
θ̂

( j)

{[Yk − g(Xk)]2 |Y1:i
}−

1

2σ 2
BΔt

i∑
k=1

E
θ̂

( j)

{[Xk − Xk−1 − (h(k;ϑ) − h(k − 1;ϑ))]2 |Y1:i
}
. (10.31)

Note that the terms which are independent of θ are neglected, since they do not affect
the subsequent optimization problem.

To calculateQ(θ, θ̂
( j)

), we must derive the conditional expectation of each term
on the right-hand side of (10.31). With this in mind, for k = 1, 2, . . . , i , we first
define the following quantities:

X̂k|i = E
θ̂

( j) (Xk |Y1:i ),
Pk|i = E

θ̂
( j) (X2

k |Y1:i ) − X̂2
k|i ,

Pk,k−1|i = E
θ̂

( j) (Xk Xk−1|Y1:i ) − X̂k|i X̂k−1|i .

According to the above-defined quantities, after some algebraic manipulations, we
have

Q(θ, θ̂
( j)

) ∝

−i log σB − i log σ − 1

2σ 2
BΔt

i∑
k=1

[
Ak − 2(h(k;ϑ) − h(k − 1;ϑ))Bk

+ (h(k;ϑ) − h(k − 1;ϑ))2
]

− 1

2σ 2

i∑
k=1

[
Y 2
k +
(
g(X̂k|k−1)

)2

+ (g′
k|k−1)

2Ck − 2Yk
(
g(X̂k|k−1) + g′

k|k−1Dk

)

+ 2g(X̂k|k−1)g
′
k|k−1Dk

]
(10.32)

where g′
k|k−1 is the derivative of g(Xk, ξ) at Xk = X̂k|k−1 defined in (10.10), and,

Ak = Pk|i + X̂2
k|i + Pk−1|i + X̂2

k−1|i − 2Pk,k−1|i − 2X̂k|i X̂k−1|i ,

Bk = X̂k|i − X̂k−1|i ,

Ck = Pk|i + X̂2
k|i + X̂2

k|k−1 − 2X̂k|i X̂k|k−1 ,

Dk = X̂k|i − X̂k|k−1 .
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Obviously, computing Q(θ, θ̂
( j)

) requires to evaluate X̂k|i , X̂k−1|i , Pk|i , Pk−1|i and
Pk,k−1|i with respect to the estimated parameter θ̂

( j)
at the j th iteration. These quan-

tities can be obtained by the Extended Kalman Smoother (EKS). EKS includes two
parts: one part is forward recursion, i.e., fitering, and the other is backward recursion,
i.e., smoothing. As same as the EKF, the detail about the EKS can be found in [44,
45]. We only give the final formulations.

(1) Forward filtering

The forward iteration by the EKF algorithm has been given in the above section.

(2) Backward smoothing

For k = i, i − 1, . . . , 1, the backward recursion can be summarized as follows:

J (k − 1) = Pk−1|k−1 · (Pk|k−1)
−1,

X̂k−1|i = X̂k−1|k−1 + J (k − 1)(X̂k|i − X̂k|k−1),

Pk−1|i = Pk−1|k−1 + J 2(k − 1)(Pk|i − Pk|k−1)

with the initial state X̂i |i and Pi |i derived from the forward filtering. Finally, the
covariance Pk,k−1|i can also be computed for k = i − 1, i − 2, . . . , 1

Pk,k−1|i = Pk|k J (k − 1) + J (k)J (k − 1)(Pk+1,k|i − Pk|k)

where the initial condition is

Pi,i−1|i =
[
1 − K (i) · ∂g

∂x

∣∣∣
x=X̂i |i

]
Pi−1|i−1.

After deriving Q(θ , θ̂
( j)

), the unknown parameter vector θ̂
( j+1)

at the ( j + 1)th

iteration can be obtained through maximizing Q(θ, θ̂
( j)

) with respect to θ . If the
unknown parameters in the state equation are independent of the parameters in the
observation equation, for reducing the complexity of parameter estimation algorithm,

Q(θ, θ̂
( j)

) can be divided into two parts. One part only contains the parameter vector
in the state equation θ1 = [ϑ, σB] and can be written as

Q1(θ1, θ̂
( j)

1 ) ∝ − 1

2σ 2
BΔt

i∑
k=1

[
Ak − 2(h(k;ϑ) − h(k − 1;ϑ))Bk +

(h(k;ϑ) − h(k − 1;ϑ))2
]

− i log σB, (10.33)

and the other part only contains the parameter vector in the observation equation
θ2 = [ξ , σ ], which can be formulated as
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Q2(θ2, θ̂
( j)

2 ) ∝ − i log σ − 1

2σ 2

i∑
k=1

[
Y 2
k +
(
g(X̂k|k−1)

)2 +

(g′
k|k−1)

2Ck − 2Yk
(
g(X̂k|k−1) + g′

k|k−1Dk

)
+

2g(X̂k|k−1)g
′
k|k−1Dk

]
. (10.34)

Therefore, we maximize Q(θ, θ̂
( j)

) through maximizing Q1(θ1, θ̂
( j)

1 ) and

Q2(θ2, θ̂
( j)

2 ), respectively. Clearly, thismaximumpolicy is easier to realize since each

of the two parts consists of less unknown parameters than maximizing Q(θ , θ̂
( j)

)

directly.
From the above derivations, we can observe that, once the new observation data

are available, we first utilize the EM algorithm to evaluate the parameters. Then, we
estimate and update the hidden degradation state at the current time by the EKF.
Finally, we update the RUL distribution accordingly and realize real-time RUL esti-
mation. Note that the EKS is just used in the derivation of parameter estimation, i.e.,
the estimated state at the current time ti by the EKS is only used to estimate the para-
meters and cannot be taken as the final estimate of the state X (ti ) at ti . For practical
applications, we need to determine the forms of nonlinear degradation function and
observation equation. Misspecification of the parametric forms of these equations
may reduce the accuracy of the estimated results. Thus, we use AIC and MSE as
measures to choose the model with the best fitness results in the case study.

10.4 Illustrative Examples

In the following, we provide the illustrative results corresponding to several fre-
quently adopted models in degradation modeling practices for reference.

10.4.1 The Derivation of the RUL for Three Cases

We consider three cases for the drift part: μ(t;ϑ) = abtb−1, μ(t;ϑ) = ab exp(bt)
and μ(t;ϑ) = abtb−1 + cd · exp(d · t), corresponding to Case 1 (C1), Case 2 (C2)

and Case 3 (C3), respectively.
For Case 1, the hidden degradation process can be written as

X (t) = X (0) + atb + σB B(t),

from Lemma 10.1, we have SB(t) = (ω − atb)
/
σB . Then substituting μ(t;ϑ) and

SB(t) into Eq. (10.5) of Lemma 10.1, we can obtain the PDF of the FHT for Case 1
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fT (t | C1) = ω − atb(1 − b)

σB

√
2π t3

exp

[
− (ω − atb)2

2σ 2
Bt

]
. (10.35)

Suppose that the degradation state at time ti is X (ti ), we can derive G(li ) =
a
(
(li + ti )b − tbi

)+ σB B(li ). According to Theorem 10.1, we formulate the PDF of
the RUL at time ti for Case 1 as

fLi |C1(li |θ ,Y1:i )= 1√
2πl2i (Pi |i + σ 2

Bli )

[
ω − aλ′(li ) + abli (li + ti )

b−1

− Pi |i (ω − aλ′(li )) + X̂i |iσ 2
Bli

Pi |i + σ 2
Bli

]

· exp
(
− (ω − aλ′(li ) − X̂i |i )2

2(Pi |i + σ 2
Bli )

)
(10.36)

where λ′(li ) = (li + ti )b − tbi .
For Case 2, we have

X (t) = X (0) + a exp(bt) − a + σB B(t),

similar to Case 1, we can derive SB(t) = (ω − a exp(bt) + a)
/
σB , and then the PDF

of the FHT can be formulated as

fT (t | C2) = ω − a(exp(bt) − bt exp(bt) − 1)

σB

√
2π t3

· exp
[
− (ω − a exp(bt) + a)2

2σ 2
Bt

]
.

(10.37)

Similarly, from Theorem 10.1, the PDF of the RUL for Case 2 can be written as

fLi |C2(li |θ,Y1:i )= 1√
2πl2i (Pi |i + σ 2

Bli )

[
ω − aγ ′(li ) + abli exp(b(li + ti ))

− Pi |i (ω − aγ ′(li )) + X̂i |iσ 2
Bli

Pi |i + σ 2
Bli

]

· exp
(
− (ω − aγ ′(li ) − X̂i |i )2

2(Pi |i + σ 2
Bli )

)
(10.38)

where γ ′(li ) = exp(b(li + ti )) − exp(bti ).
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For Case 3, the degradation process is modeled as

X (t) = X (0) + atb + c exp(d · t) − c + σB B(t),

and the PDF of the FHT can be written as

fT (t | C3) =ω − atb(1 − b) − c(exp(d · t) − d · t exp(d · t) − 1)

σB

√
2π t3

· exp
[
− (ω − atb − c exp(d · t) + c)2

2σ 2
Bt

]
. (10.39)

Similar to Case 1 and Case 2, the PDF of the RUL for Case 3 can be formulated
as

fLi |C2 (li |θ , Y1:i )= 1√
2πl2i (Pi |i + σ 2

Bli )

[
ω − η′(li )+ abli (li + ti )

b−1 + cd · li exp(d · (li + ti ))

− Pi |i (ω − η′(li )) + X̂i |iσ 2
Bli

Pi |i + σ 2
Bli

]
· exp
(
− (ω − η′(li ) − X̂i |i )2

2(Pi |i + σ 2
Bli )

)
(10.40)

where η′(li ) = a(li + ti )b − atbi + c exp(d · (li + ti )) − c exp(d · ti ).
From Eq. (10.35), we can see that fT (t | C1) is reduced to the inverse Gaussian

distribution exactly if b = 1. This is as expected since any properly developed non-
linear model should cover a linear model as a special case. However, if we use
Pr(T ≤ t) = Pr(X (t) ≥ ω) to obtain the FHT distribution for C1 as an approxima-
tion under the monotonic assumption, it can be shown without difficulty that the
obtained results cannot reduce to the linear case exactly.

10.4.2 The Derivation of Parameter Estimation Algorithm
for Three Cases

In the simulation study, we considered the case where μ(t;ϑ) = abtb−1 and
g(Xk; ξ) = β0 + β1 exp(Xk). Then the state-space model is

Xk = Xk−1 + a(kΔt)b − a((k − 1)Δt)b + σB

√
Δt ωk, (10.41a)

Yk = β0 + β1 exp(Xk) + συk (10.41b)

Thus, we give the derivation of parameter estimation algorithm for this case firstly.
In Sect. 10.3, we have derived the general parameter estimation algorithm for our
model. Now we give the conditional expectation of the complete data log-likelihood
function directly for this case
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Q(θ , θ̂
( j)

) ∝

− i log σB − 1

2σ 2
BΔt

i∑
k=1

[
Ak − 2a

(
(kΔt)b − ((k − 1)Δt)b

)
Bk + a2

(
(kΔt)b − ((k − 1)Δt)b

)2]

− i log σ − 1

2σ 2

i∑
k=1

[
Y 2
k + β2

0 + β2
1 exp(2X̂k|k−1)Ck − 2Yk(β0 + β1 exp(X̂k|k−1)(Dk + 1))

+ 2β1exp(X̂k|k−1)(β0 + β1 exp(X̂k|k−1))Dk + β2
1 exp(2X̂k|k−1) + 2β0β1 exp(X̂k|k−1)

]
,

(10.42)

where Ak , Bk , Ck and Dk are the same as the general case.

After deriving Q(θ , θ̂
( j)

), the unknown parameter vector θ̂
( j+1)

at the ( j + 1)th

iteration can be obtained through maximizing Q(θ, θ̂
( j)

) with respect to θ . How-

ever, it is difficult to obtain the accurate estimation of θ̂
( j+1)

since it consists of
six unknown parameters. Now let θ1 = [a, b, σB] and θ2 = [β0, β1, σ ]. Then, we
decompose Q(θ, θ̂

( j)
) into two parts. The first part is

Q1(θ1, θ̂
( j)

1 ) ∝ − 1

2σ 2
BΔt

i∑
k=1

[
Ak + a2

(
(kΔt)b − ((k − 1)Δt)b

)2

− 2a
(
(kΔt)b − ((k − 1)Δt)b

)
Bk

]
− i log σB, (10.43)

and the second part is

Q2(θ2, θ̂
( j)

2 ) ∝ − 1

2σ 2

i∑
k=1

[
Y 2
k + β2

0 + β2
1 exp(2X̂k|k−1) + 2β0β1 exp(X̂k|k−1)

+ β2
1 exp(2X̂k|k−1)Ck + 2β1exp(X̂k|k−1)(β0 + β1 exp(X̂k|k−1))Dk

− 2Yk(β0 + β1 exp(X̂k|k−1)(Dk + 1))
]

− i log σ. (10.44)

From the above two formulations, we can find that Q1(θ1, θ̂
( j)

1 ) and Q2(θ2, θ̂
( j)

2 )

do not affect each other if maximizing these two parts. Therefore, we maximize

Q(θ, θ̂
( j)

) through maximizingQ1(θ1, θ̂
( j)

1 ) andQ2(θ2, θ̂
( j)

2 ), respectively. Clearly,
this maximum policy is easier to realize since each of the two parts consists of

less unknown parameters than maximizing Q(θ , θ̂
( j)

) directly. For notational con-
venience, we omit the superscript ( j + 1) indicating that the parameters are obtained
at ( j + 1)th iteration in the following derivation. Nowwe compute θ̂1 and θ̂2 through
the technique of profile log-likelihood function as follows.

First, we calculate the partial derivatives ofQ1(θ1, θ̂
( j)

1 ) with respect to a and σB

for specific value of b, and let these two partial derivatives equal to zero, we can
obtain
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â =
∑i

k=1

(
(kΔt)b − ((k − 1)Δt)b

)
Bk∑i

k=1

(
(kΔt)b − ((k − 1)Δt)b

)2 (10.45)

and

σ̂ 2
B =
{ i∑

k=1

[
Ak − 2a

(
(kΔt)b − ((k − 1)Δt)b

)
Bk

+ a2
(
(kΔt)b − ((k − 1)Δt)b

)2]}/
(i · Δt). (10.46)

Similarly, let

Zk = Y 2
k + β2

0 + β2
1 exp(2X̂k|k−1) + 2β0β1 exp(X̂k|k−1) + β2

1 exp(2X̂k|k−1)Ck

+ 2β1exp(X̂k|k−1)(β0 + β1 exp(X̂k|k−1))Dk − 2Yk(β0 + β1 exp(X̂k|k−1)(Dk + 1)).

We compute the partial derivatives of Q2(θ2, θ̂
( j)

2 ) with respect to σ and β0 for
specific value of β1, and set these two partial derivatives equal to zero, we have

σ̂ 2 =
∑i

k=1 Zk

i
(10.47)

and

β̂0 =

i∑
k=1

Yk −
i∑

k=1

[β1 exp(X̂k|k−1) + β1 exp(X̂k|k−1)Dk]

i
. (10.48)

Substituting (10.45) and (10.46) into (10.43), the profile log-likelihood function
can be obtained for b. Then, maximizing the profile log-likelihood function with
respect to b through one-dimension search, the estimate of b can be derived. Under
the estimated b, the estimates of a and σB can be obtained from (10.45) and (10.46).
Same to the above calculating procedure, the estimate of θ2 = [β0, β1, σ ] can also
be obtained. Then we iterate the E-step andM-step until the convergence is achieved.

Now we give the derivation of parameter estimation algorithm for the other two
forms in the case study.

In the case study, we consider one case where μ(t;ϑ) = ab exp(bt). Then the
state-space model is

Xk = Xk−1 + a exp((b · kΔt)) − a exp(b · ((k − 1)Δt)) + σB

√
Δt ωk, (10.49a)

Yk = Xk + συk (10.49b)
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According to the general form, we have

Q(θ , θ̂
( j)

) ∝ − i log σB − i log σ − 1

2σ 2

i∑
k=1

(
Y 2
k + Pk|i + X̂2

k|i − 2Yk X̂k|i
)

− 1

2σ 2
BΔt

i∑
k=1

[
Ak − 2a

(
exp(b(kΔt)) − exp(b((k − 1)Δt))

)
Bk

+ a2
(
exp(b(kΔt)) − exp(b((k − 1)Δt))

)2]
. (10.50)

As the same as Case 1, we decompose Q(θ , θ̂
( j)

) into two parts. The first part is

Q1(θ1, θ̂
( j)

1 ) ∝ − 1

2σ 2
BΔt

i∑
k=1

[
Ak − 2a

(
exp(b(kΔt)) − exp(b((k − 1)Δt))

)
Bk

+ a2
(
exp(b(kΔt)) − exp(b((k − 1)Δt))

)2]− i log σB, (10.51)

and the second part is

Q2(θ1, θ̂
( j)

1 ) ∝ −i log σ − 1

2σ 2

i∑
k=1

(
Y 2
k + Pk|i + X̂2

k|i − 2Yk X̂k|i
)
. (10.52)

Similarly, we can obtain

â =
∑i

k=1 (exp(b(kΔt)) − exp(b((k − 1)Δt)) Bk∑i
k=1 (exp(b(kΔt)) − exp(b((k − 1)Δt))2

, (10.53)

σ̂ 2
B =
{ i∑

k=1

[
Ak − 2a

(
exp(b(kΔt)) − exp(b((k − 1)Δt))

)
Bk

+ a2
(
exp(b(kΔt)) − exp(b((k − 1)Δt))

)2]}/
(i · Δt) (10.54)

and

σ̂ 2 =
∑i

k=1

(
Y 2
k + Pk|i + X̂2

k|i − 2Yk X̂k|i
)

i
. (10.55)

The subsequent estimation procedure is the same as the first case.
We consider the third case where μ(t;ϑ) = abtb−1 + cd · exp(d · t). Then the

state-space model is
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Xk = Xk−1 + a(kΔt)b − a((k − 1)Δt)b + c exp(d · kΔt)

− c exp(d · ((k − 1)Δt)) + σB

√
Δt ωk, (10.56a)

Yk = Xk + συk (10.56b)

Now we give the decomposed Q(θ , θ̂
( j)

) directly as

Q1(θ1, θ̂
( j)
1 ) ∝ − 1

2σ 2
BΔt

i∑
k=1

[
Ak − 2aHk Bk − 2cJk Bk + (aHk + cJk)

2]− i log σB ,

(10.57)

and

Q2(θ1, θ̂
( j)

1 ) ∝ −i log σ − 1

2σ 2

i∑
k=1

(
Y 2
k + Pk|i + X̂2

k|i − 2Yk X̂k|i
)
, (10.58)

where Hk = (kΔt)b − ((k − 1)Δt)b, Jk = exp(d · kΔt) − exp(d · (k − 1)Δt). So
we have

â =
∑i

k=1 (HkBk − cHk Jk)∑i
k=1 H

2
k

, (10.59)

σ̂ 2
B =
∑i

k=1

[
Ak − 2aHk Bk − 2cJk Bk + (aHk + cJk)2

]
i · Δt

, (10.60)

and

σ̂ 2 =
∑i

k=1

(
Y 2
k + Pk|i + X̂2

k|i − 2Yk X̂k|i
)

i
. (10.61)

The subsequent estimation procedure is the same as the previous two cases.

10.5 Simulation Study

In this section, we provide a numerical simulation to verify the effectiveness of
the proposed method. For illustration purpose, we consider the hidden degradation
process represented by X (t) = atb + σB B(t) and the observation process expressed
by Yk = β0 + β1 exp(Xk) + συk to generate the simulation data. Then we use our
approach to model these data and estimate the RUL, which is termed as Model 1.
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The reason to use the exponential equation as the measurement equation is based
on our observation that this kind of functional form is widely used in degradation
modeling practice [6, 32, 34] and the other areas [47, 48]. For comparison, we also
consider the linear drift-based BM as the hidden degradation process to achieve the
RUL estimation, which is termed as Model 2. Specifically, the following state-space
model is used to simulate the data.

Xk = Xk−1 + a(kΔt)b − a((k − 1)Δt)b + σB

√
Δt ωk, (10.62a)

Yk = β0 + β1 exp(Xk) + συk (10.62b)

We set the parameters a = 0.1, b = 2, σB = 0.4, β0 = 1, β1 = 0.01 and σ = 0.005,
and the sampling interval Δt = 0.1s. When we set the threshold ω = 10, the FHT
for a particular sampling path is approximated to be 9.3 s after 93 sampling. Namely,
a realization of the FHT for our simulation is 9.3 s. In the following, we utilize the
simulation data corresponding to this realization of the FHT to illustrate our approach
and suppose that the lifetime is 9.3 s in order to compare the mean of the estimated
RUL with the actual RUL at each sampling time point. Then, at the current time, we
use all up-to-date data to estimate the unknown parameters by EM algorithm, and
when the new observation is available, the parameters can be re-estimated based on
the new observed measurement. The total time of processing all 93 simulation data is
approximately 0.9976 s in theMATLABwith the computer 2.4GHz Intel Core 2Duo
and 2 GB memory. This implies that the mean time of processing each observation
data is about 0.017 s, but the sampling interval in simulation is set as 0.1 s. This
demonstrates the computational speed is very fast in the context of real-time CM.
The evolving path of the estimated parameter vector θ is illustrated in Fig. 10.1a–f.

From Fig. 10.1a–f, we can observe that the estimates of the unknown parameters
eventually converge to their true values, which proves that our parameter estima-
tion method presented in Sect. 10.3 can work well. In addition, the estimates of the
parameters except σB can approach the true values as quickly as the available data
accumulated. After obtaining the estimated and updated parameters at each sampling
time, the EKF can be used to evaluate the hidden degradation state. For comparison,
the actual degradation path and the estimated expectations of the degradation states
using Model 1 and Model 2 are shown in Fig. 10.2, respectively.

From Fig. 10.2, we can find that both of these two models can track the actual
degradation state well. Especially at the beginning stage, the Model 2 even outper-
forms the Model 1. It seems that the estimated results have almost no difference. For
clarity, we also show the errors of the estimated expectations with the actual state,
using Model 1 and Model 2, respectively. Instead, we show the absolute errors in
Fig. 10.3.

As shown in Fig. 10.3, if there are only few sampling data at the early stage of
the degradation, the linear model has a better tracking performance than our model
before the 38thCMpoint. This is not uncommon since the available data are few at the
beginning stage of the degradation. Comparedwith the linearmodel, ourmodel needs
to estimate additional parameters. However, with the sampling data accumulated, the
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Fig. 10.1 Estimations of the parameters

error between the predicted path and the actual path becomes smaller and smaller.
Particularly, after about the 38th CM point, Model 1 can track the degradation path
very well, which is better than Model 2. Even so, the difference of the estimated
RULs from two models is major, as shown in Figs. 10.4 and 10.5.

Obviously, with respect to the RUL estimation, the advantages of Model 1 are
much greater than those of Model 2. First, the PDF of the RUL obtained by Model 1
is much more compact. This indicates that the uncertainty of the estimated RUL is
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Fig. 10.2 Comparison of the
state estimation results
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Fig. 10.3 Comparative
results of the estimated errors
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Fig. 10.4 Estimated results
with Model 1
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Fig. 10.5 Estimated results
with Model 2
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much smaller than that obtained byModel 2. Second, the mean RULs under Model 1
are more accurate, however, using the linear model to estimate the RUL leads to
greater errors and the estimated RUL is far from the actual RUL. This shows that
our method is effective for the case that the degradation process is hidden and has
nonlinear characteristics. Note that from Figs. 10.2 and 10.3, all models can track the
degradation path pretty well as the data are accumulated but the linear model fails
to give a good estimate of the RUL distribution. In contrast, the proposed method
can achieve accurate estimation and reduce the uncertainty in the estimated RUL,
as illustrated by Figs. 10.4 and 10.5. This provides the evidence for the necessity of
investigating the hidden and nonlinear degradation process and the application of the
proposed method in prognostics and health management (PHM), since the uncer-
tainty reduction is one of the important aspects for PHM. In addition, this simulation
tells us that depending on the common statistical practice of fitting curves to data
may lead to an inadequate model or even nonsense results for RUL estimation. This
is true for estimating RUL since we care about not only the prediction accuracy for
degradation state but also reducing the uncertainty of the estimatedRUL. Fortunately,
it seems that our developed method can balance such requirements. Actually, this
phenomena is very consistent with the intuition that the longer the forecasting step
is, the worse the prediction is. Namely, the long-term prediction will incur greater
inaccuracy. For our case, the prediction for the degradation state is just one-step
ahead prediction, but the RUL estimation is a long-term prediction up to the failure.
Therefore, when the linear model is applied to nonlinear data at the current time, it
will look at the future evolution of degradation path with a constant rate and thus
ignore the time-dependent degradation rate for nonlinear process. As a result, greater
inaccuracy in RUL estimation is caused. In contrast, our general model can take the
time-varying degradation rate into account and thus leads to better RUL estimation
in nonlinear case even for long-term prediction, since the data used in the simulation
are nonlinear in nature. For verifying the above analysis, we compare the long-term
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Fig. 10.6 Comparison of the
ten-step prediction of the
state
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prediction of the state by these two models. The results indicate that the long-term
predictions by Model 1 significantly outperform those of Model 2.

To make the comparison more comprehensive in the simulation study, we also
consider the following two scenarios. First, we compare the long-term predictions of
the state using Model 1 and Model 2. For illustrative purpose, we show the ten-step
prediction of the state after observing until 4 s. Specifically, at time ti , 40 ≤ i ≤ 83
(since we have 93 observations in this simulation study), we used EKF to estimate
the state X (i) at time ti , i.e., X̂i |i . Then, we predict the state X (i + 10) by X̂i |i and
obtain the ten-step prediction X̂i+10|i . When the new observation is available, the
state estimation and ten-prediction can be updated accordingly. The result is shown
in Fig. 10.6.

From Fig. 10.6, we can see that these two models have a large difference in long-
term predictions.Moreover, the prediction accuracy ofModel 1 outperformsModel 2
apparently. This phenomena indicates that the long-term predictions by linear model
will incur greater inaccuracy than our model when the degradation process is nonlin-
ear. Thus, as a long-term prediction up to failure, the RUL estimation by these two
models will have a large difference as discussed in Sect. 10.4 of the original chapter.

Second, for illustrating that the linear model is a special case of our model in the
linear case, we consider the hidden degradation process represented by the linear
drifted-based BM X (t) = at + σB B(t) and the observation process expressed by
Yk = β0 + β1 exp(Xk) + συk to generate the simulation data. Then we compare the
RUL estimation of Model 1 andModel 2 using these data, respectively. A realization
of the FHT for this particular sampling path is approximated to be 4.5 s after 45
samplings. In the following, we utilize the simulation data corresponding to this
realization of the FHT to illustrate our approach and suppose that the lifetime is 4.5 s
in order to compare the mean of the estimated RUL with the actual RUL at each
sampling time point. The evolving path of the estimated parameter b in our model is
illustrated in Fig. 10.7.
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Fig. 10.7 Estimate of the
parameter b of model 1
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From Fig. 10.2, it can be observed that as the number of observations increases,
the estimated b approaches 1 in our model. This shows that our model can reduce
to the linear model if the data are linear. As the same as the nonlinear scenario, we
show the comparison of the state estimation in Figs. 10.8 and 10.9.

From Figs. 10.8 and 10.9, we can find that Model 1 and Model 2 can track the
actual degradation state verywell and the estimated results have almost no difference.
Additionally, we illustrate the five-step prediction of the state by these two model
after observing until 1.5 s, respectively, as shown in Fig. 10.10.

Only from Fig. 10.10, we can observe that overall, the performance of long-term
prediction of the state by Model 2 displays a marginally better than that of Model 1.
For further comparison, we show the RUL estimation by Model 1 and Model 2 in
Figs. 10.11 and 10.12, respectively.
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Fig. 10.9 Comparative
results of the estimated errors

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

The sampling time

Th
e 

es
tim

at
io

n 
er

ro
r

The estimation error with model 1
The estimation error with model 2

Fig. 10.10 Comparison of
the five-step prediction of the
state
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Fig. 10.11 Estimated results
with model 1
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Fig. 10.12 Estimated results
with model 2
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From Figs. 10.11 and 10.12, we can find that there are marginal differences in
RUL estimation between these two models and Model 2 performed a little better
than Model 1. In a word, from the above simulations, we can observe that our model
is more general and it can also estimate the RUL well in the linear case.

10.6 Case Study

Lithium-ion battery is a critical component of many electronic equipments and com-
plex systems and many faults of these systems are caused by the failure of the
Lithium-ion battery. The accurate RUL estimation of the battery can improve the
system reliability and reduce the failure risk. Thus, there have been many studies
regarding the RUL estimation of the Lithium-ion battery [49–53]. To demonstrate
the effectiveness of our method, a case study was conducted on a NASA battery
set [54]. The data can be found in the website http://ti.arc.nasa.gov/tech/dash/pcoe/
prognostic-data-repository/.

10.6.1 The Data and State-Space-Based Degradation Model

Theuse of theLithium-ionbattery is a process of charging anddischarging repeatedly.
The battery capacity will degenerate with the increasing of the number of charge
and discharge. The cycle life of the battery is defined as the number of times a
battery can be recharged before its capacity has faded beyond acceptable limits
(20∼30% of the rated capacity) [51]. Thus the battery capacity can be used as the
actual degradation state. The data have been collected from a custom built battery
prognostics testbed at the NASA Ames Prognostics Center of Excellence (PCoE).

http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
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In this testing, the Lithium-ion batteries were run through 3 different operational
profiles including charge, discharge and electrochemical impedance spectrometry
(EIS). Repeated charge and discharge cycles led to accelerated aging of the batteries.
The experiments were stopped when the batteries reached the end-of-life (EOL)
criteria of 30% fade in rated capacity. The capacities and the other inner parameters
of these tested batteries were recorded in each cycle. Based on the data set, Saha
and Geobel have conducted many important and excellent works [49–52]. They
constructed state-space model and utilized filter technique to estimate the RUL of the
battery. In these studies, themeasured capacitywhich contained noisewas used as the
observed measurement, and the actual capacity was used as the hidden degradation
state. Similar to the work of Saha and Geobel, in this chapter, we establish the state-
space model as follows

Xk = Xk−1 + h(tk;ϑ) − h(tk−1;ϑ) + σB

√
Δt ωk, (10.63a)

Yk = Xk + συk (10.63b)

where the unknown model parameter vector is θ = [ϑ, σB, σ ].
In practice, the hidden degradation process can be often fitted by our proposed

model with different nonlinear forms. Thus, the selection of a suitable function
h(t;ϑ) is essential when applying our method for a particular application scenario.
To compare the fitness of different nonlinear forms, both the Akaike information
criterion (AIC) [55] and total mean squared error (TMSE) [6] about the actual RUL
obtained at each observation point are used as measures for comparative studies. the
AIC considers both the log-likelihood and the number of parameters estimated, and
provides a way of choosing the best fitness model. the AIC is calculated by

AIC = 2
(
k − ln L(θ̂)

)
(10.64)

where k is the number of model parameters, θ̂ is the vector of estimated parameters
and L(θ̂) is the maximized likelihood function value.

The mean squared error (MSE) at each observation point is defined as

MSEi =
∫ ∞

0
(l̃i − li )

2 fLi (li |θ,Y1:i )dli , (10.65)

where l̃i is the actual RUL at ti and fLi (li |θ ,Y1:i ) is the according PDF of the RUL
estimated by (10.12).

Therefore, the TMSE can be defined as the sum of the MSE at each observation
point over the whole life. Namely, if there are N observations, the TMSE can be
formulated as
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TMSE =
N∑
i=1

∫ ∞

0
(l̃i − li )

2 fLi (li |θ,Y1:i )dli , (10.66)

In both criteria, the smallest AIC and TMSE values correspond to the best fitness
result, and thus we can choose the form with the smallest AIC and TMSE as the
nonlinear degradation model for prognostics.

10.6.2 Results and Discussions

We utilize the data of No. 6 battery to verify the effectiveness of our method, which
includes 168 sets of the CM data. Note that our method is derived based on the case
that the degradation process has an increasing trend. However, the capacity of the
battery has a decreasing trend over time. Thus, we take the reciprocals of the data as
the observations and the critical threshold can be changed accordingly. In order to
estimate and update the RUL of the No. 6 battery at each cycle accurately, we need to
estimate and update the model parameters precisely. However, different initial values
of parameters have an important impact on the parameter estimation. In this chapter,
we take the data of the other batteries as the historical data to train the model, and
then we can obtain the trained parameters which are taken as the initial values of
parameters for the prognosis of No. 6 battery. The results of the model selection and
final parameter estimates are given in Table10.1.

For comparison, we also give the results of the linear model. Furthermore, we also
show the total time of parameter estimation and updating. From Table 10.1, we can
see that when h(t;ϑ) = atb + c exp(d · t) − c, there is the smallest AIC and TMSE.

Table 10.1 The final estimated parameters and model selection results

h(t; ϑ)

atb + c exp(d · t) − c atb a exp(bt) − a at

a 0.2039 0.4839 1.0707e-8 0.005

b 0.5203 0.0242 0.089 1

c 0.0012 – – –

d 0.0002 – – –

σB 0.0465 0.0083 0.0389 0.0386

σ 0.0041 0.0026 0.0043 0.0043

ln L(θ) 515.653 493.4631 418.2522 410.6047

AIC −1019.3 −978.9262 −828.5044 −815.2094

TMSE×105 3.5966 3.9083 4.9876 5.5932

Time of
parameter
updating (s)

3.4726 1.8769 1.7324 0.3172
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Fig. 10.13 Comparative
results of our proposed
method with the linear model
in RUL estimation
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This nonlinear form is most appropriate to fit the data of the battery. Thus, we utilize
this form to model the degradation process. Note that the other nonlinear forms for
this particular application scenario can be chosen. However, for illustrative purpose,
we just choose these three nonlinear forms to show the feasibility and effectiveness of
our method. As shown in Table 10.1, the estimated values of b in the three nonlinear
models clearly confirm the nonlinear characteristics. All kinds of nonlinear models
outperform the linear model in terms of ln L(θ), AIC and TMSE. Since the linear
model contains less parameters, the parameter updating of the linearmodel consumes
the least time. However, for the updating speed, it has almost no difference with
these three nonlinear models. The purpose of giving the total updating time is only
showing the computational speed of our parameter estimation algorithm can satisfy
the real-time requirement. For comparison, the PDFs of the RULs corresponding to
the selected nonlinear model and the linear model from the 155th monitoring time
point to the 165th monitoring time point are shown in Fig. 10.13.

It can be observed from Fig. 10.13 that our method outperforms the linear model
in the respect of the results of the RUL estimation. In particularly, the PDF of the RUL
is more dispersed when using the linear model, which reflects a greater uncertainty
in the RUL estimation.

To further compare the performance of our method with the linear model, we
show the MSE about the RUL at each monitoring time point associated with these
two models in Fig. 10.14. Note that we only plot the results from the 60th monitoring
time point to the 168th point since the changes of the parameter estimation will be
smaller and smaller after the 60th monitoring time point.

As shown in Fig. 10.14, the MSE of the RUL obtained by our method maintains a
lower level and approaches a smallMSE valuemore quickly than the linear model. In
addition, our method has a smoother curve of MSE compared with the linear model.
All these results indicate that our method has a better RUL estimation than the linear
model.
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Fig. 10.14 Comparative
results of our proposed
method with the linear model
in MSE of the estimated
RUL
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Chapter 11
Prognostics for Nonlinear Degrading Systems
with Three-Source Variability

11.1 Introduction

Thanks to the rapid development of information and sensing technologies, the degra-
dation signals of a system can be obtained relatively easily using CM techniques, and
the past decade has witnessed an increasingly growing research interest on the RUL
estimate of systems based on the sensed degradation signals [1, 2]. However, it is
well known that degradation occurs in a stochastic way for a number of engineering
systems or components, such as the fatigue crack length, gyros, and battery systems
[3–7]. Therefore, it is difficult to estimate the RUL of stochastic degrading systems
with certainty, and attention is usually paid to the estimation of the PDF of the RUL
by modeling the sensed degradation signals.

In reality, there are three main sources of variability which affect the uncertainty
of the RUL, including the temporal variability, the unit-to-unit variability, and the
measurement variability [8–12]. First, the temporal variability results from the inher-
ent stochasticity of a degradation process over time, which is the reason for using
a stochastic process to model the degradation. Second, the unit-to-unit variability is
referred to as the heterogeneity of the systems with the same kind, which results in
different degradation paths of the same kind of units. Last, but not least, the mea-
surement variability results from imperfect measurements in practice. For example,
measurement error is inevitable in the measured data, such as noise, disturbance, etc.
[2]. In this case, the underlying degradation state can only be partially reflected by
the observed degradation signals.

There are three main sources of variability affecting the measured degradation
signals and the associated RUL estimate. Under such circumstances, it is expected
that fully taking into account the temporal variability, unit-to-unit variability and
measurement variability can decrease the uncertainty resulting from these sources
simultaneously and improve the accuracy of the RUL estimate. In the existing lit-
erature, there have been various prognostic models to describe such variability in
the degradation model and RUL estimate, such as random coefficient regression
models [13, 14], Gamma processes [15–17], inverse Gaussian processes [18–20],
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and Wiener processes [21–23]. More detailed discussions can be found in a review
[24]. In these studies, degradation models driven by Wiener processes are particu-
larly attractive because they have favorable mathematical properties and can model
nonmonotonic degradation signals. Thus, we focus mainly on the models based on
Wiener processes. In the model framework of a Wiener process, several prognostic
models have been developed. For example, in [25], a Wiener process with a deter-
ministic drift parameter was used to estimate the RUL, and the drift parameter was
adaptively updated based on the Kalman filtering technique. However, the authors
only considered the temporal variability in the RUL estimate and omitted the unit-to-
unit variability and measurement variability. Further, in [26], the authors considered
the unit-to-unit variability on the RUL estimate by modeling the uncertainty of the
drift parameter, but they ignored the presence of the measurement variability.

It is observed that the above-mentioned works partially considered the temporal
variability, unit-to-unit variability, and measurement variability, and the research on
the RUL estimate using degradation models with three-source variability was very
limited. Recently, the work in [3] characterized the three-source variability simulta-
neously to incorporate the effect of them into the RUL estimate, and a random effect
parameter was adaptively estimated by the Kalman filtering technique. However,
they only adopted the BM with a linear drift to model the degradation process. This
was also the case for the above-mentioned studies, and most of them considered
linear degradation processes for the RUL estimate, including [3, 27, 28].

In practice, the degradation nonlinearity exists extensively in complicated degrad-
ing systems, and the linear model cannot track the dynamics of such degradation
processes effectively. In the current literature, some nonlinear processes can be
approximated to be nearly linear by some kind of transformations on the degra-
dation data, such as a log-transformation [29, 30] or a timescale transformation [31,
32]. It is worth noting that these transformations were limited to cases where such
transformations existed, but few nonlinear processes can be transformed in these
ways. At the same time, there was an implicit assumption used in the above trans-
formations that the random part of the transformed process was still BM, which may
not always be the case. In addition, the particle filter or a Monte Carlo simulation
was used to estimate the RUL of nonlinear degradation processes [33, 34]. While a
simulation can only evaluate the PDF of the RUL numerically, its analytical form is
preferred for health management.

To handle the above problem, the work in [4] formulated an analytical approxi-
mation of the PDF of the RUL based on a well-known time-space transformation.
However, they only considered the temporal variability and unit-to-unit variability
for the PDF of the RUL. There are reported works considering the measurement
variability using nonlinear state-space models in [34–37]. However, the other two
sources of variability were not considered simultaneously together in these works.
For example, in [34], the authors applied a nonlinear state-space model and the par-
ticle filter technique to estimate the hidden fatigue crack growth process. Similar
ideas can also be found in [35, 36]. Recently, the work in [37] considered the tem-
poral variability and measurement variability to estimate the PDF of the RUL by
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a nonlinear state-space-based prognostic model and the extended Kalman filtering
technique, but the unit-to-unit variability was omitted for the PDF of the RUL.

In this chapter, a general nonlinear degradation model is presented to characterize
the three-source variability and the degradation nonlinearity simultaneously. By con-
structing a state-space model and applying the Kalman filtering technique, we derive
the analytical form of the PDF of the RULwith three-source variability and the degra-
dation nonlinearity approximately, which can be real-time updated with the available
observations. The presented work is distinguished from existing results such as [4,
29, 31–37] in the following major aspects: (1) we explicitly consider three-source
variability simultaneously in modeling nonlinear degradation progress and derive
the analytical form of the PDF of the RUL in this case, which can be updated with
the newly observed degradation data; (2) for the nonlinear degradation model, the
random effect parameters and the hidden degradation states can be real-time esti-
mated by the constructed state-space model and the Kalman filtering technique; and
(3) using Kalman filtering, the effects of the degradation nonlinearity and the three-
source variability are propagated into the PDF of the RUL. It is worth noting that
the constructed state-space model is initialized through the MLE of the parameters
based on heterogeneous degradation observations of multiple units. Thus, the link-
age between current and past data is established. Finally, the proposed approach is
demonstrated by a numerical example and a practical case study. The results verify
that the proposed approach improves the modeling fitting and the accuracy of the
RUL estimate.

The remainder of the chapter is organized as follows. Section11.2 gives a descrip-
tion of the nonlinear degradation model with three-source variability for prognostics.
In Sect. 11.3, we present the method of the RUL estimate with three-source variabil-
ity. Section11.4 provides experimental results for demonstration.

11.2 Nonlinear Prognostic Model Description

To describe the temporal variability, let {X (t) , t ≥ 0} denote the stochastic process
describing the nonlinear degradation progression over the operating time t . Fur-
thermore, to characterize the temporal variability and the unit-to-unit variability,
{X (t) , t ≥ 0} is modeled by a diffusion process as

X (t) = X (0) + f (t; θ1)
T θ2 + σB B (t) (11.1)

where the degradation process {X (t), t ≥ 0} is driven by a standardBM {B(t), t ≥ 0}
with a drift term f (t; θ1)

T θ2. Here, f (t; θ1) is a n-dimensional vector whose ele-
ments can be some fundamental functions θ1 and θ2 are parameter vectors, and
particularly, there is θ2 ∈ Rn .

It is noted that Eq. (11.1) is a general form that can include some existingmodels as
special cases. As an illustrative example, we consider a hybrid deteriorating model
presented in [40], which was used to describe the gyros’ degradation process as
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X (t) = λt+α
∫ t
0 βγ β−1dγ +σB B (t). In this case, if we let X (0) = 0 f (t; θ1)

T =
[t ∫ t

0 βγ β−1dγ ], θ1 = [1β], and θ2 = [λα]T , then themodel in [40] can be considered
as a special case of Eq. (11.1).

Now, we summarize the main settings for Eq. (11.1). {B(t), t ≥ 0} is used to
characterize the temporal variability in the degradation process; θ2 is a random para-
meter vector, which is used to represent the individual variation; θ1 and σB are fixed
parameters representing the degradation features that are common to all systems in
the population. For simplicity, we assume that θ2 and B(t) are s-independent and
θ2 follows a multivariable normal distribution, i.e., θ2∼MV N (μθ2 , �θ2). Similar
assumptions can be found in the existing degradation model literature, e.g., [3, 9,
24].

Remark 11.1 Equation (11.2) is a more general expression than the linear degrada-
tion model [38], nonlinear degradation model [39], and hybrid degradation model
[40]. Particularly, when f (t; θ1)

T θ2 is a one-dimensional linear or nonlinear func-
tion, Eq. (1) is a linear or nonlinear model, for example, if f (t; θ1)

T = t , Eq. (11.1)
becomes the conventional linear model in [41]. Furthermore, when f (t; θ1)

T θ2 is
a two-dimensional vector containing linear and nonlinear functions, Eq. (11.1) can
describe the hybrid degradation model given in [40].

In addition, to model the effect of the measurement variability, the relationship
between the underlying degradation state and the observable, but uncertain, mea-
surements at time t is described by the measurement process {Y (t), t ≥ 0} as

Y (t) = X (t) + ε, (11.2)

where ε is the randommeasurement error, assumed to be independent and identically
distributed (i.i.d.) with ε∼N (0, σ 2

ε ). It is further assumed that ε, θ2, and B(t) are
mutually s-independent. It is worth noting that Eq. (11.2) has been widely used in
degradation model studies such as [3, 10, 22]. Of course, other observation models
can also be used but will require complicated computations like the extendedKalman
filter or the particle filter rather than the Kalman filter used in this chapter.

Similar to other degradation modeling works [4, 24, 42], we adopt the concept of
the first hitting time (FHT) to define the lifetime. Namely, if the degradation process
{X (t), t ≥ 0}is equal to or beyond a preset failure threshold level, it is declared that
system failure occurs. Based on the FHT concept, the lifetime T of a system can be
defined as

T = inf {t : X (t) ≥ w| X (0) < w} , (11.3)

where w is the preset failure threshold level.
Now, let us focus on the main objective of how to estimate and update the PDF

of the RUL of an individual system in service with the newly obtained degradation
signals. Suppose the degradation process is discretely monitored at time 0 = t0 <

t1 < ... < tk , and let Yk = Y (tk) denote the degradation measurement at time tk . The
set of the degradationmeasurements up to tk is represented by Y1:k = {Y1,Y2, ..., Yk},
and the corresponding set of the degradation states up to tk is represented by
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X1:k = {X1, X2, ..., Xk}, where Xk = X (tk). From Eq. (11.2), we further express
the discrete measurement at tk as Yk = Xk + εk , where the measurement errors εk
are assumed to be i.i.d. realizations of ε

Therefore, the RUL Lk of a system at time tk can be defined as

Lk = inf {lk > 0 : X (lk + tk) ≥ w} , (11.4)

with the conditional PDF f Lk |Y1:k ( lk | Y1:k)
In the following sections, the primary goal is to derive the conditional PDF

f Lk |Y1:k ( lk | Y1:k) of the RUL based on Y1:k .

11.3 RUL Estimate Method with Three-Source Variability

To obtain the RUL estimate with three-source variability for model (11.1), we first
summarize, by a synoptic, the main steps of the presented RUL estimate method with
three-source variability as follows.

Step 1: estimate the RUL only with the temporal variability.
Step 2: estimate the RUL with the temporal variability and the unit-to-unit

variability based on step 1.
Step 3: estimate the RUL with the temporal variability and the measurement

variability based on step 1.
Step 4: estimate the RUL with three-source variability simultaneously based on

step 3.
Step 5: estimate the unknown parameters for the degradation models based on the

history data.

In the following, we elaborate the details of the presented method step by step.

11.3.1 RUL Estimate Only with the Temporal Variability

In this case, the degradation process is described in Eq. (11.1), and the degradation
observations can be observed directly. Inspired by thework in [4],we use a time-space
transformation on the model to obtain an analytical approximation of the distribution
of the FHT in a closed form. Then, the following Lemma can be established.

Lemma 11.1 For the degradation process X (t) given by (11.2), if f ′ (t; θ1)
T is

a continuous function of time t with t ∈ [0,∞), then the PDF of the FHT of X (t)
crossing a constant boundaryw can be approximatedwith an explicit formas follows:
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fT (t |θ2) ∼= w − f (t; θ1)
T θ2 + t f ′ (t; θ1)

T θ2

σB

√
2π t3

× exp

[
− (w − f (t; θ1)

T θ2)
2

2tσ 2
B

]
.

(11.5)

The proof of Lemma 11.1 and the practical meaning of Lemma 11.1 can be found
in [4].

Based on the Lemma 11.1, the RUL could be estimated at the kth monitoring
point tk from the starting time as the following theorem.

Theorem 11.1 If the unknown parameters are fixed and the current degradation
state Xk can be observed, i.e., there are no random effects, the PDF of the RUL can
be formulated at tk by incorporating the real-time degradation state Xk as

f Lk |θ2,Xk ( lk | θ2, Xk) = wk − f ∗(lk , θ1)T θ2 − lk [ f ∗(lk , θ1)T ]′θ2
σB

√
2πl3k

× exp

[
− (wk − f ∗(lk , θ1)T θ2)

2

2lkσ 2
B

]
,

(11.6)
where f ∗(lk; θ1)

T = f (lk + tk; θ1)
T − f (tk; θ1)

T , wk = w − Xk

Proof Once we observe X (tk)at tk , for t ≥ tk , the degradation process can be written
as X (t) = X (tk) + [

f (t; θ1)
T − f (tk; θ1)

T ] θ2 + σB B(t − tk). In such a case, the
residual t − tkcorresponds to the realization of the RUL at time tk if t is the FHT
of {X (t), t ≥ tk}. Having this in mind, we take the transformation lk = t − tkwith
lk ≥ 0 and the process{X (t), t ≥ tk} can be transformed into

X (lk + tk) − X (tk) = [
f (lk + tk; θ1)

T − f (tk; θ1)
T ] θ2 + σB B(lk),with lk ≥ 0.

(11.7)

As a result, the RUL at time tk is equal to the FHT of the process {Z(lk), lk ≥ 0},
crossing the threshold wk = w − X (tk), where Z(lk) = X (lk + tk) − X (tk) and
Z(0) = 0. That is to say,

Z(lk) = [
f (lk + tk; θ1)

T − f (tk; θ1)
T ] θ2 + σB B(lk). (11.8)

Based on the Lemma 11.1, we have f ∗(lk; θ1)
T = f (lk + tk; θ1)

T − f (tk; θ1)
T ,

and we can obtain the PDF of the RUL as summarized in Eq. (11.6).
The proof is completed.

11.3.2 RUL Estimate with the Temporal Variability
and the Unit-to-Unit Variability

On the basis of the temporal variability, we further consider the random effect of θ2,
which characterizes the unit-to-unit variability. As such, the PDF of the lifetime can
be calculated based on the law of total probability as
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fT (t) =
∫ +∞

−∞
fT |θ2(t |θ2)p(θ2)dθ2 = Eθ2 [ fT |θ2(t |θ2)], (11.9)

where p(θ2) is the PDF of θ2, and Eθ2 [·] is the expectation operator with respect to
θ2

To calculate the integral in Eq. (11.9) explicitly, we derive the following lemma.

Lemma 11.2 If ρ ∼ MV N (μ,�), w1,w2 ∈ Rγ ∈ R+, a, b ∈ Rn, n is the
number of the dimensions of ρ and I is a n-dimension identity matrix, then the
following holds:

Eρ

[
(w1 − aT ρ) exp

(
− (w2 − bT ρ)2

2γ

)]
=
√

γ n

| bbT � + γ I | ×
(
w1 − w2aT�b + γ aTμ

γ + bT�b

)

× exp

[
− (w2 − bTμ)2

2(γ + bT�b)

]
. (11.10)

Proof We first obtain

Eρ

[
(w1 − aTρ) exp

(
− (w2 − bTρ)2

2γ

)]

= w1Eρ

[
exp

(
− (w2 − bTρ)2

2γ

)]
− Eρ

[
aTρ exp

(
− (w2 − bTρ)2

2γ

)]

= w1 I1 − I2,

where I1 and I2 can be formulated separately as follows:

I1 = 1√|�|√(2π)n
exp

[
−w2

2 + γμT �−1μ

2γ

]∫ +∞

−∞
· · ·
∫ +∞

−∞
exp

(
−ρT Mρ − 2qT ρ

2γ

)
dρ1 · · · dρn ,

with M = bbT + γ�−1qT = w2bT + γμT�−1.

Using the integral formulation

∫ +∞

−∞
exp

(
−ωz2 − 2ψz

ϕ

)
dz =

√
ϕπ

ω
exp

[
ψ2

ωϕ

]
.

We can compute I1 as

I1 =
√

γ n

|�||M | exp
[
−w2

2 + γμT�−1μ − qT M−1q

2γ

]
.

In a similar way, I2 can be obtained as
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I2

= 1√|�|√(2π)n
exp

[
−w2

2 + γμT �−1μ

2γ

]∫ +∞

−∞
· · ·
∫ +∞

−∞
aT ρ exp

(
−ρT Mρ − 2qT ρ

2γ

)
dρ1 · · · dρn .

Using the integral formulation

∫ +∞

−∞
z exp

(
−ωz2 − 2ψz

ϕ

)
dz = ψ

ω

√
ϕπ

ω
exp

[
ψ2

ωϕ

]
.

We can compute I2 as

I2 = aT M−1q

√
γ n

|�||M | exp
[
−w2

2 + γμT�−1μ − qT M−1q

2γ

]
.

Thus, the formulation of the expectation can be obtained as

Eρ

[
(w1 − aTρ) exp

(
− (w2 − bTρ)2

2γ

)]

=
√

γ n

|�||M |
(
w1 − aT M−1q

)
exp

[
−w2

2 + γμT�−1μ − qT M−1q

2γ

]
.

Furthermore, simplifying the above formulation by matrix operation, we have

Eρ

[
(w1 − aTρ) exp

(
− (w2 − bTρ)2

2γ

)]

=
√

γ n

|bbT� + γ I | × (
w1 − aT M−1q

)× exp

[
w2 − bTμ2

2(γ + bT�b)

]
.

Then, we obtain

Eρ

[
(w1 − aTρ) exp

(
− (w2 − bTρ)2

2γ

)]

=
√

γ n

|bbT� + γ I | ×
(
w1 − w2aT�b + γ aTμ

γ + bT�b

)
× exp

[
w2 − bTμ2

2(γ + bT�b)

]
.

This completes the proof of Lemma 11.2.

Similar to Theorem 11.1, the RUL estimate considering the temporal variability
and the unit-to-unit variability is summarized as follows.

Theorem 11.2 For the degradation process in Eq. (11.1) and the definition of the
RUL in Eq. (11.4), given the current degradation state Xk and θ2 ∼ MV N (μθ2 , �θ2),
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the RUL estimate at time tk can be formulated as

flk |Xk (lk |Xk) ∼= 1

σB

√
2πl3k

√
γ n

|bbT�θ2 + γ In|
[
wk − wkaT�θ2b + γ aTμθ2

γ + bT�θ2b

]

× exp

[
− (wk − bTμθ2)

2

2(γ + bT�θ2b)

]
, (11.11)

where aT = f ∗(lk, θ1)T − t[ f ∗(lk, θ1)
T ]′, bT = f ∗(lk, θ1)T , wk = w − Xk and

γ = σ 2
Blk .

Proof Using the law of total probability, Theorem 11.1 and Lemma 11.2, we obtain

flk |Xk (lk |Xk) =
∫ +∞

−∞
f Lk |θ2,Xk ( lk | θ2, Xk)p(θ2)dθ2

= Eθ2|Xk

{
f Lk |θ2,Xk ( lk | θ2, Xk)

}

∼=
Eθ2|Xk

{[
wk − f ∗(lk , θ1)T θ2 − lk [ f ∗(lk , θ1)T ]′θ2

]
exp

[
− (wk− f ∗(lk ,θ1)T θ2)

2

2lkσ 2
B

]}

σB

√
2πl3k

= 1

σB

√
2πl3k

√
γ n

|bbT�θ2 + γ In |
(
wk − wkaT�θ2b + γ aTμθ2

γ + bT�θ2b

)
exp

[
− (wk − bTμθ2 )

2

2(γ + bT�θ2b)

]
,

(11.12)

where aT = f ∗(lk, θ1)T − t[ f ∗(lk, θ1)
T ]′, bT = f ∗(lk, θ1)T , wk = w − Xk and

γ = σ 2
Blk .

This completes the proof of Theorem 11.2.

The above results are derived under the assumption that the current degradation
state can be observed directly and exactly. However, this directly observed case is
rather difficult in reality for the appearance of themeasurement variability. Therefore,
to reduce the effect of themeasurement variability, the unobservable degradation state
should be estimated from the degradation measurements. The case is considered in
the following part.

11.3.3 RUL Estimate with the Temporal Variability
and the Measurement Variability

Because only uncertain measurements Y1:k up to the current time tk are available and
the degradation state Xk cannot be directly used, we have to estimate the distribution
of Xk at time tk to account for the impact of the measurement variability on the
RUL estimate. To identify the hidden degradation state in the dynamic system, we
convert the state and measurement equations into discrete time equations to facilitate
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real-time state estimation. Specifically, once the new observations are available at
the discrete time point tk , k = 1, 2, . . ., we have

{
Xk = Xk−1 + f (tk; θ1)

T θ2 − f (tk−1; θ1)
T θ2 + νk

Yk = Xk + εk
(11.13)

where νk = σB
[
B(tk) − B(tk−1)

]
and εk is the realization of ε at tk . From the model

settings in Sect. 11.2, we know that {νk}k≥1 and {εk}k≥1 are i.i.d. noise sequences,
respectively. We further have νk ∼ N

(
0, σ 2

B(tk − tk−1)
)
and εk ∼ N (0, σ 2

ε )

According toEq. (11.13),we utilize theKalmanfilter to estimate the hidden degra-
dation state. To do so, define X̂ k|k = E( Xk | Y1:k, θ2) and Pk|k = var( Xk | Y1:k, θ2)
as the conditional expectation and variance of Xk, respectively. Further, we define
X̂ k|k−1 = E( Xk | Y1:k−1, θ2) and Pk|k−1 = var( Xk | Y1:k−1, θ2) as the one-step-ahead
predicted expectation and variance, respectively. Therefore, at time tk , according to
Eq. (11.13), the Kalman filter for the degradation state estimation can be summarized
as follows:

State estimation:

X̂ k|k−1 = X̂ k−1|k−1 + f (tk; θ1)
T θ2 − f (tk−1; θ1)

T θ2,

X̂ k|k = X̂ k|k−1 + K (k)(Yk − X̂ k|k−1),

K (k) = Pk|k−1(Pk|k−1 + γ 2)−1,

Pk|k−1 = Pk−1|k−1 + σ 2
B(tk − tk−1).

Updating variance:
Pk|k = (1 − K (k)) Pk|k−1,

where the initial values are set as X̂ 0|0 = 0 and P0|0 = 0 based on the model setting
X0 = 0.

Under the Kalman filtering algorithm, the posterior estimate of the Xk conditional
on the measurement sequence Y1:k up to tk is Gaussian and analytically tractable, i.e.,
Xk | θ2,Y1:k ∼ N (X̂ k|k, Pk|k). Therefore, considering the estimation uncertainty, the
RUL estimate is calculated by

f Lk |θ2,Y1:k ( lk | θ2, Y1:k) =
∫ +∞

−∞
f Lk |θ2,Xk ,Y1:k ( lk | θ2, Xk,Y1:k)p( Xk | θ2,Y1:k)dXk

= E Xk |θ2,Y1:k
[
f Lk |θ2,Xk ,Y1:k ( lk | θ2, Xk,Y1:k)

]
= E Xk |θ2,Y1:k

[
f Lk |θ2,Xk ( lk | θ2, Xk)

]
,

where p( Xk | θ2,Y1:k) is the conditional PDF of Xk | θ2,Y1:k , with mean X̂ k|k and
variance Pk|k .
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Based on Lemma 11.2, the RUL estimate with the temporal variability and mea-
surement variability can be derived as the following theorem.

Theorem 11.3 For the diffusion process in Eqs. (11.1) and (11.4), given θ2 and
uncertain measurements Y1:k up to the current time tk , the following result for the
RUL estimate at time tk holds:

f Lk |θ2,Y1:k ( lk | θ2, Y1:k) ∼= 1√
2πl2k γ ∗

(
w∗ − lk [ f ∗(lk , θ1)

T ]′θ2 − Pk|kw∗ + σ 2
Blk X̂ k|k

γ ∗

)

× exp

⎛
⎜⎝−

(
X̂ k|k − w∗)2

2γ ∗

⎞
⎟⎠ , (11.14)

where γ ∗ = Pk|k + σ 2
Blk , w∗ = w − f ∗(lk, θ1)T θ2, and f ∗(lk; θ1)

T = f

(lk + tk; θ1)
T − f (tk; θ1)

T

Proof Using Theorem 11.1 and Lemma 11.2, we obtain

f Lk |θ2,Y1:k ( lk | θ2, Y1:k) = E Xk |θ2,Y1:k
[
f Lk |θ2,Xk ,Y1:k ( lk | θ2, Xk , Y1:k)

]
= E Xk |θ2,Y1:k

[
f Lk |θ2,Xk ( lk | θ2, Xk)

]

∼=
E Xk |θ2,Y1:k

{(
wk − f ∗(lk , θ1)T θ2 − lk [ f ∗(lk , θ1)T ]′θ2

)× exp

[
− (wk− f ∗(lk ,θ1)T θ2)

2

2lkσ 2
B

]}

σB

√
2πl3k

=
E Xk |θ2,Y1:k

{(
w − f ∗(lk , θ1)T θ2 − lk [ f ∗(lk , θ1)T ]′θ2 − Xk

)× exp

[
− (w− f ∗(lk ,θ1)T θ2−Xk )

2

2lkσ 2
B

]}

σB

√
2πl3k

=

(
w − f ∗(lk , θ1)T θ2 − lk [ f ∗(lk , θ1)T ]′θ2 − Pk|k (w− f ∗(lk ,θ1)T θ2)+σ 2

Blk X̂ k|k
Pk|k+σ 2

Blk

)
√
2πl2k (Pk|k + σ 2

Blk)

× exp

⎡
⎢⎣−

(
w − f ∗(lk , θ1)T θ2 − X̂ k|k

)2
2(Pk|k + σ 2

Blk)

⎤
⎥⎦

= 1√
2πl2k γ

∗

(
w∗ − lk [ f ∗(lk , θ1)T ]′θ2 − Pk|kw∗ + σ 2

Blk X̂ k|k
γ ∗

)
× exp

⎛
⎜⎝−

(
w∗ − X̂ k|k

)2
2γ ∗

⎞
⎟⎠ ,

where γ ∗ = Pk|k + σ 2
Blk , w

∗ = w − f ∗(lk, θ1)T θ2, f ∗(lk; θ1)
T = f (lk + tk; θ1)

T −
f (tk; θ1)

T

This completes the proof of Theorem 11.3.

Theorem 11.3 incorporates the estimation uncertainty to the PDF of the RUL
because the measurement variability is considered in the derived the PDF of the
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RUL. However, the parameter θ2 is assumed to be given, and the random effect from
θ2 is not considered in this case. In addition, the parameter θ2 is not real-time updated
as the newly obtained measurements Y1:k . In the following part, the random effect
and the updating mechanism for θ2are considered for the RUL estimate.

11.3.4 RUL Estimate with Three-Source Variability

To estimate the PDF of the RUL with three-source variability based on the Step 3,
we consider an updating procedure for the parameter θ2by making θ2,k = θ2,k−1,
where θ2,0 ∼ MV N (μθ2 , �θ2) is the initial distribution. The posterior distribution of
θ2 can be calculated based on the measurements up to tk . Furthermore, based on Eq.
(11.13), the degradation equation with three-source variability can be reconstructed
as the following state-space model:

⎧⎨
⎩

Xk = Xk−1 + f (tk; θ1)
T θ2,k−1 − f (tk−1; θ1)

T θ2,k−1 + vk
θ2,k = θ2,k−1

Yk = Xk + εk

, (11.15)

where {vk}k≥1 and {εk}k≥1 are i.i.d. noise sequences, i.e., vk∼N
(
0, σ 2

B(tk − tk−1)
)

and εk∼N (0, σ 2
ε ), respectively.

In Eq. (11.15), the hidden degradation state and random parameter θ2 need to be
estimated from the uncertain measurements Y1:k up to the current time tk . We use
the Kalman filter to estimate the hidden degradation state and random parameter and
further formulate Eq. (11.15) as

{
Zk=Ak Zk−1+ηk
Yk = CZk + εk

, (11.16)

where Zk ∈ R(n+1)×1, ηk ∈ R(n+1)×1, Ak ∈ R(n+1)×(n+1),C ∈ R1×(n+1), ηk∼
MV N (0, Qk), and Qk ∈ R(n+1)×(n+1), with

Zk =
[
Xk

θ2,k

]
, ηk =

[
vk
0

]
, Ak =

[
1 f (tk; θ1)

T − f (tk−1; θ1)
T

0 1

]
,

C = [1, 0] , Qk =
[

σ 2
B(tk − tk−1) 0

0 0

]

respectively.
Similarly, the expectation and variance of Zk are defined as

Ẑ k|k =
[
X̂ k|k
θ̂ 2,k|k

]
= E( Zk | Y1:k), (11.17)
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Pk|k =
[

κX,k κT
c,k

κc,k κθ2,k

]
= cov( Zk | Y1:k), (11.18)

where

X̂ k|k = E( Xk | Y1:k), θ̂ 2,k|k = E( θ2,k
∣∣ Y1:k), κX,k = var( Xk |Y1:k), κθ2,k = var( θ2,k

∣∣ Y1:k),
κc,k = [

cov( Xk , θ2,1,k
∣∣ Y1:k), cov( Xk , θ2,2,k

∣∣ Y1:k)...cov( Xk , θ2,n,k
∣∣ Y1:k)]T .

As such, we further define the one-step-ahead predicted expectation and variance,
respectively, as

Ẑ k|k−1 =
[
X̂ k|k−1

θ̂ 2,k|k−1

]
= E( Zk | Y1:k−1) (11.19)

Pk|k−1 =
[

κ X,k|k−1 κT
c,k|k−1

κ c,k|k−1 κ θ2,k|k−1

]
= cov( Zk | Y1:k−1). (11.20)

Under the above settings and definitions, once the measurement is available at tk ,
the hidden degradation state and random parameter, i.e., Zk , can be estimated by the
Kalman filtering algorithm as follows:

State estimation:

Ẑ k|k−1 = Ak Ẑ k−1|k−1,

Ẑ k|k = Ẑ k|k−1 + K (k)(Yk − C Ẑ k|k−1),

K (k) = Pk|k−1C
T [CPk|k−1C

T + σ 2
ε ]−1,

Pk|k−1 = Ak Pk−1|k−1A
T
k + Qk .

Updating variance:

Pk|k = Pk|k−1 − K (k)CPk|k−1,

where the initial values of the states are specified as

Ẑ 0|0 =
[

0
μθ2

]
, P0|0 =

[
0 0
0 �θ2

]
,

where μθ2 and �θ2 can be obtained by the maximum likelihood estimation discussed
in Sect. 11.4.

According to the Gaussian nature of the Kalman filter, the PDF of Zk in Eq.
(11.16), conditional on Y1:k is Gaussian distributed with Zk ∼ N (Ẑ k|k, Pk|k). Based
on the properties of the multivariate Gaussian distribution, we have

θ2,k
∣∣ Y1:k∼MV N (θ̂2,k|k, κθ2,k), (11.21)
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Xk | Y1:k∼N (X̂ k|k, κX,k), (11.22)

Xk | θ2,k,Y1:k∼N
(
μ Xk |θ2,k, σ

2
Xk |θ2,k

)
(11.23)

with
μ Xk |θ2,k = X̂ k|k + κT

c,kκ
−1
θ2,k

(θ2,k − θ̂ 2,k|k), (11.24)

σ 2
Xk |θ2,k = κX,k − κT

c,kκ
−1
θ2,k

κc,k . (11.25)

Now, we can derive f Lk |Y1:k ( lk | Y1:k) at tk with three-source variability. As such,
based on the law of total probability, we can obtain

f Lk |Y1:k ( lk | Y1:k) = ∫ +∞
−∞ f Lk |Zk ,Y1:k ( lk |Zk,Y1:k)p(Zk | Y1:k)dZk

= E θ2,k|Y1:k
[
E Xk |θ2,k ,Y1:k [ f Lk |θ2,k ,Xk ,Y1:k ( lk | θ2,k, Xk,Y1:k)]

]
.

(11.26)

Based on Lemmas 11.1 and 11.2 and Theorem 11.3, we can estimate the PDF of
the RUL using the degradation model with three-source variability.

Theorem 11.4 For the diffusion process Eqs. (11.1) and (11.4), given the uncertain
measurements Y1:k up to current time tk , the following result for the RUL Lk at time
tk holds:

f Lk |Y1:k ( lk | Y1:k) ∼=
√

Cn−3
k

2π |Bk BT
k κθ2,k + Ck In|

(
ω1,k − ω2,k Akκθ2,k Bk + Ck Ak θ̂2,k

Ck + BT
k κθ2,k Bk

)

(11.27)

× exp

⎛
⎜⎝−

(
(w − X̂ k|k − f ∗(lk, θ1)T θ̂2,k)

)2
2(Ck + BT

k κθ2,k Bk)

⎞
⎟⎠ , (11.28)

where f ∗(lk; θ1)
T , w1,k , w2,k Ak, Bk, and Ck are specified as follows:

f ∗(lk; θ1)
T = f (lk + tk; θ1)

T − f (tk; θ1)
T

w1,k = (w − X̂ k|k + κT
c,kκ

−1
θ2,k

θ̂ 2,k|k)σ 2
B

w2,k = w − X̂ k|k + κT
c,kκ

−1
θ2,k

θ̂ 2,k|k
Ak = κT

c,kκ
−1
θ2,k

σ 2
B + f ∗(lk, θ1)Tσ 2

B + lk[ f ∗(lk, θ1)T ]′σ 2
B − [ f ∗(lk, θ1)T ]′σ 2

Xk |θ2,k
Bk = (

f ∗(lk, θ1)T + κT
c,kκ

−1
θ2,k

)T
,Ck = σ 2

Xk |θ2,k + σ 2
Blk .

Proof To derive the result for f Lk |Y1:k ( lk | Y1:k), we first have the following result:
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f Lk |θ2,k ,Xk ,Y1:k ( lk | θ2,k, Xk,Y1:k) = f Lk |θ2,k ,Xk ( lk | θ2,k, Xk)

= wk − f ∗(lk, θ1)T θ2,k − lk[ f ∗(lk, θ1)T ]′θ2,k
σB

√
2πl3k

exp

[
− (wk − f ∗(lk, θ1)T θ2,k)

2

2lkσ 2
B

]
.

(11.29)

In this case, because Xk | θ2,k,Y1:k∼N
(
μ Xk |θ2,k, σ 2

Xk |θ2,k
)
, we obtain the following

from Theorem 11.3:

E Xk |θ2,k ,Y1:k [ f Lk |θ2,k ,Xk ,Y1:k ( lk | θ2,k , Xk , Y1:k)]
∼= 1√

2πl2k Ck

(
w∗ − lk [ f ∗(lk , θ1)T ]′θ2,k − σ 2

Xk |θ2 ,k
w∗+σ 2

Blkμ Xk |θ2 ,k

Ck

)
exp

(
−
(
μ Xk |θ2 ,k−w∗

)2
2Ck

)
,

(11.30)
where μ Xk |θ2,k and σ 2

Xk |θ2,k are specified in Eqs. (11.24) and (11.25), and μ Xk |θ2,k is
a function of θ2,k .

From Eq. (11.26) and θ2,k
∣∣ Y1:k∼MV N (θ̂2,k|k, κ)

θ2,k
, we know

f Lk |Y1:k ( lk | Y1:k) = Eθ2,k |Y1:k
[
E Xk |θ2,k ,Y1:k [ f Lk |θ2,k ,Xk ,Y1:k ( lk | θ2,k , Xk , Y1:k)]

]
∼= E θ2,k |Y1:k

[
1√

2πl2k γ ∗

(
w∗ − lk [ f ∗(lk , θ1)T ]′θ2,k − σ 2

Xk |θ2 ,k
w∗+σ 2

Blkμ Xk |θ2 ,k

Ck

)

× exp

(
−
(
μ Xk |θ2 ,k−w∗

)2
2Ck

)]

= E θ2,k |Y1:k
[

1√
2πl2k Ck

(
w∗ − lk [ f ∗(lk , θ1)T ]′θ2,k − σ 2

Xk |θ2 ,k
w∗+σ 2

Blk (X̂ k|k+κT
c,kκ

−1
θ2 ,k (θ2,k−θ̂ 2,k|k ))

Ck

)

× exp

(
−
(
(X̂ k|k+κT

c,kκ
−1
θ2 ,k (θ2,k−θ̂ 2,k|k ))−w∗

)2
2Ck

)]

=
√

Cn−3
k

2π |Bk BT
k κ+

θ2 ,kCk In |

(
ω1,k − ω2,k Akκθ2 ,k Bk+Ck Ak θ̂2,k

Ck+BT
k κθ2 ,k Bk

)
× exp

(
−
(
(w−X̂ k|k− f ∗(lk ,θ1)T θ̂2,k )

)2
2(Ck+BT

k κθ2 ,k Bk )

)

,

where the last “=” is implied by Lemma 11.2, and f ∗(lk; θ1)
T ,w∗,w1,k ,w2,k Ak , Bk ,

and Ck are specified as follows:

f ∗(lk; θ1)
T = f (lk + tk; θ1)

T − f (tk; θ1)
T

w∗ = w − f ∗(lk, θ1)T θ2,k

w1,k = (w − X̂ k|k + κT
c,kκ

−1
θ2,k

θ̂ 2,k|k)σ 2
B

w2,k = w − X̂ k|k + κT
c,kκ

−1
θ2,k

θ̂ 2,k|k
Ak = κT

c,kκ
−1
θ2,k

σ 2
B + f ∗(lk, θ1)Tσ 2

B + lk[ f ∗(lk, θ1)T ]′σ 2
B − [ f ∗(lk, θ1)T ]′σ 2

Xk |θ2,k
Bk = (

f ∗(lk, θ1)T + κT
c,kκ

−1
θ2,k

)T
,Ck = σ 2

Xk |θ2,k + σ 2
Blk .

This completes the proof of Theorem 11.4.
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In the above case, as a new degradation measurement is observed, we can calcu-
late the estimation of Zkconditional on Y1:k by Eq. (11.16) with Zk∼N (Ẑ k|k, Pk|k).
Therefore, we can estimate the RUL of this dynamic system adaptively by utiliz-
ing Theorem 11.4. For the underlying stochastic degradation process, different from
Theorems 11.2 and 11.3, Theorem 11.4 incorporates the uncertainties in estimating
thedegradation state and randomeffect part into thePDFof theRUL, f Lk |Y1:k ( lk | Y1:k).
At the same time, once the new observation is available, the parameters θ̂ 2,k|k and
κθ2,k in f Lk |Y1:k ( lk | Y1:k) can be real-time updated by the Kalman filter.

For the relationship between Theorem 11.4 and the previous results about the
RUL estimate, we have the following remark.

Remark 11.2 It is not difficult to verify from the derivation process of Theorem 11.4
that the results in Theorem 11.4 can reduce to the RUL estimate results in [3] by
simplifying the drift part as f ∗(lk; θ1)

T = lk . In addition, by selecting the parameters
σ 2

ε and�θ2 , the results in Theorem 11.4 can reduce to the RUL estimate results, which
only consider one- or two-source variability.

11.3.5 Parameter Estimation

In addition to the real-time estimated parameters in Eq. (11.13), there are several
unknown initial parameters, including μθ2 , �θ2 , θ1, σ 2

B , and σ 2
ε , which need to be

estimated based on the historical data. These parameters can be estimated using the
MLE approach, and the detailed method can be found in [3, 4].

11.4 Experimental Studies

The purpose of this section is to demonstrate the presented modeling framework. To
compare the fitness of the models, both the AIC [43] and TMSE [44] are employed.
The AIC is used to balance the log-likelihood with the number of the estimated
parameters to avoid the problem of over-parameterization. The AIC is calculated by

AIC = 2(p − max �), (11.31)

where p is the number of estimated model parameters and max � is the maximized
likelihood.

The other useful measure of goodness of fit, MSE, can assess the fit to the data
directly, defined as [44]

MSEk = E
[
(Lk − L̃k)

2
]
, (11.32)

where L̃k denotes the actual RUL obtained at tk , and the expectation is calculated
based on the PDF of the RUL through the available data. The TMSE is the sum of
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the MSE at each CM point over the whole life cycle. In other words, if there are m
observations, T MSE = ∑m

k=1 MSEk .
Based on the above criteria, we can choose the model with the smallest AIC and

MSE values, which correspond to the best fitting accuracy.
To show the superiority considering the three-source variability, we consider the

following three competing cases for comparative studies.

(1) Case 1: �θ2 = 0 σε = 0. In this case, the random effect and the measurement
uncertainty are ignored, and the result in Theorem 1 with only the temporal
variability is used for the RUL estimate.

(2) Case 2: σε = 0. In this case, only the measurement uncertainty is ignored, and
the result in Theorem 2 with the temporal variability and the random effect is
used for the RUL estimate.

(3) Case 3:�θ2 = 0 In this case, only the random effect is ignored, and the result
in Theorem 3 with the temporal variability and the measurement uncertainty is
used for the RUL estimate.

It is noted that Case 1 corresponds to the case only taking one-source variability.
Case 2 and Case 3 correspond to the cases only considering two-source variability.
By contrast, we term the model with three-source case as Case 4. In the following
part, we compare the model fitting for the above four cases through a numerical
simulation study and a practical case for fatigue crack data [4].

11.4.1 Simulation Study

Here, we first provide a numerical simulation. The purpose of this numerical example
is to illustrate the effectiveness of the presented method by comparing it with the
results of Cases 1–3. Another purpose is to verify the usefulness of the proposed
parameter estimation algorithm.

According to Eqs. (11.1) and (11.2), the degradation data of N units are generated
with the following state-space model:

{
Xk = Xk−1 + a(k�t)b − a[(k − 1)�t]b + vk
Yk = Xk + εk

, (11.33)

where a ∼ N (μa, σ
2
a ), vk ∼ N

(
0, σ 2

B(tk − tk−1)
)
, and εk ∼ N (0, σ 2

ε ). The para-
meters are set as μa = 0.2, σa = 0.03, b = 2, σB = 0.05, and σε = 0.3, and the
sampling interval is �t = 0.1. Each unit is sampled m times, and the failure thresh-
old is specified as w = 13. Here, we simulate data with N = 101 and m = 100.
The former 100 units are used to identify the unknown parameters, and the last unit
is used as a testing sample to compare the results of the RUL estimate for different
cases. In the following, we compare the four cases of model fitting and the RUL
estimate.
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Table 11.1 Comparison of the four degradation models with the simulation data

μa σa b σB σε log-LF AIC

Case 1 0.2038 – 2.0030 1.3471 – −5648.9928 11303.9856

Case 2 0.1985 0.0181 2.0138 1.3474 – −5647.0081 11302.0162

Case 3 0.2054 – 1.9999 0.4456 0.27989 −3922.7418 7853.4836

Case 4 0.2104 0.0312 1.9901 0.3056 0.29291 −3646.8234 7303.6448

Fig. 11.1 The degradation path of the testing sample

Based on the parameter estimation method presented in Sect. 4, we estimate the
parameters for the four cases. For comparison, the parameter estimates, the associated
values of log-LF, and AIC are shown in Table11.1.

As shown in Table11.1, the estimated results of the parameters are close to the
values used for generating the simulation data. Therefore, the parameter estimation
method in this chapter is effective. In addition, the model in Case 1 with one-source
variability has the least log-LF and the greatest AIC. Comparatively, the models in
Case 2 and Case 3 with two-source variability have a greater log-LF and a lower AIC
than Case 1, but the greatest log-LF and the least AIC are obtained by the model
of Case 4 with three-source variability. These observations indicate that considering
three-source variability in degradation modeling is necessary and can effectively
improve the model fitting in term of the AIC.

To further illustrate the effectiveness of the developed model and method in RUL
estimate, we use the testing sample, which can be observed in Fig. 11.1 from the
simulation data, to show the MSEs of the RUL under four different cases in the
lifecycle.

The MSEs can be calculated based on the definition of the MSE and the RUL
estimate. Here, the evolving path of the MSEs of Cases 1–3 against Case 4 at each
sampling point is shown in Fig. 11.2.
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Fig. 11.2 Comparisons for MSE of the RUL estimate for the examining sample

As shown in Fig. 11.2, the MSEs of the RUL estimate with three-source vari-
ability maintain a relatively low level compared to the other three cases. In Cases
1–3, the MSEs decrease slowly and suffer some large fluctuations, which result from
the uncertain degradation signals. These three cases do not fully consider the uncer-
tainties in the degradation signals, i.e., taking either only one-source or two-source
variability. By contrast, in Case 4, the MSEs decrease quickly because it considers
all three-source variability simultaneously.

Furthermore, we note that Case 3 behaves better than Cases 1 and 2, though the
random effect is not considered in Fig. 11.2. The reason is that the observation history
of the degradation signals up to the current sampling point is fully used to estimate
the RUL based on Kalman filter, as implied by Theorem 11.3. In addition, the MSEs
in Case 3 have a better performance than Case 4 before the 15th sampling point,
which is not uncommon because there are few available data at the initial stage of
the degradation. Clearly, as the degradation data are accumulated, the results in Case
4 are better than those in Case 3.

Finally, Case 1 and Case 2 have larger MSEs in all of CM points because the
observation data contain measurement errors and relatively large variance, which
can be observed in Table11.1. Accordingly, the values of the TMSEs for Cases 1–4
are 290.2352, 288.9250, 234.0842, and 146.0553, respectively. It is not difficult to
find that these results are consistent with the above discussions, and the results further
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demonstrate that degradationmodelingwith three-source variability has a better RUL
estimate than the other three cases and can improve the estimation accuracy.

To further verify the effectiveness of the developedmethod inpractical application,
we estimate the RUL of the fatigue crack length in 2017-T4 aluminum alloy [4].
Accordingly, the results are comparedwith themethod presented in [4],whichmainly
considers the temporality or both the temporal variability and individual variability.

11.4.2 Case Study

The original degradation data representing the crack length propagation contain four
test specimens of 2017-T4 aluminum alloy, as given in Chap.7. For each unit, the
fatigue crack length is recorded per 0.1 million cycles from 1.5 through 2.4 million
cycles. During testing, ten crack levels were recorded for each unit. The data have
been shown graphically in Fig. 7.2. Here, the failed threshold level is set as 5.6 mm.
The main parameter estimation results are summarized in Table11.2.

As expected, Table11.2 shows that the model of Case 4 with three-source vari-
ability outperforms Cases 1–3 in terms of log-LF, the AIC, and TMSE. Specifically,
the estimated results show that the results of Case 4 have better fit than those in
Cases 1–3 in terms of both the AIC and TMSE. This case study demonstrates the
better model fitting performance of the presented model with three-source variabil-
ity over considering one- or two-source variability. However, the estimated results in
Table11.2 deserve some comments. It is observed that the estimated values of σa are
much lower than the values of μa , σB , and σε, which may indicate that the influence
brought by the random effects (represented by σa) can be neglected. On the other
hand, according to Eq. (11.1) and the measurement model in Eq. (11.2), the variance
of the degradation quantity at a discrete time tk is var (X (tk)) = σ 2

a t
2b
k + σ 2

Btk .
Thus, σahas more impact on the degradation uncertainty as t increases. In this sense,
the influence of the random effects cannot be simply neglected. On the other hand,
using the parameters in Table11.2 (Case 4), at tk = 2 million cycles, we have
σ 2
a t

2b
k = 3.04367e − 003 and σ 2

Btk = 2.58e − 004. This computed result indicates
that the effect of the random effects is greater than the temporal variability. Thus, we
cannot neglect the effect of σa , particularly when the system’s age t is large.

To further illustrate the effectiveness of the developed model and the method in
the RUL estimate, we use the degradation data of the third unit to show the PDF of

Table 11.2 Comparisons of the four degradation models with the fatigue crack growth data
μa σa b σB σε log-LF AIC TMSE

Case 1 3.5654e−004 – 11.0746 1.9819 – −43.5131 93.0262 0.0572

Case 2 3.9477e−005 8.9347e−006 13.4820 1.8977 – −43.1125 94.2250 0.0518

Case 3 4.9223e−005 – 13.3145 0.534649 0.490743 −37.4882 82.9764 0.0259

Case 4 4.9e−003 1.9582e−004 8.1382 0.011358 0.51211 −28.9682 67.9364 0.0063

http://dx.doi.org/10.1007/978-3-662-54030-5_7
http://dx.doi.org/10.1007/978-3-662-54030-5_7
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Fig. 11.3 Comparative results of the RUL estimate for Cases 1–4 with the fatigue crack data

the RUL estimate of Cases 1–4. Correspondingly, the actual RULs and the estimated
mean RULs are shown graphically in Fig. 11.3 for comparison.

As observed in Fig. 11.3, the PDF of the RUL is more compact around the actual
RUL. This denotes that the uncertainty of the RUL estimate is much smaller than
other cases. On the other hand, the mean RUL is more accurate in Case 4 than other
cases. In addition, at the last four sampling times, the results in Case 4 and Case
3 outperform the results in Case 1 and Case 2. The reason behind this observation
is elaborated as follows. It is observed that the degradation rate of the crack length
increases from 2.1 million cycles, but Case 1 and Case 2 cannot track such changes
in time. In contrast, Case 3 can update the estimated state of the crack length by the
Karman filter, and Case 4 can adaptively adjust the drift coefficient a by the updating
mechanism. Similarly, the updating process is shown in Fig. 11.4.

As shown in Fig. 11.4, the posterior mean μa,k|k of a is changed as the obtained
degradation data because the drift coefficient a is changing as the degradation accu-
mulates, which is different from the simulation case in the previous section. In addi-
tion, the standard deviation σa,k is still decreasing as the update process develops.

For further comparisons, we compute the corresponding MSEs of the RUL esti-
mates for the four cases, as illustrated in Fig. 11.5. As in Fig. 11.2, we can obtain
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Fig. 11.4 Updates of μa,k|k and σa,k using the fatigue crack data

Fig. 11.5 Comparisons for the MSE of the RUL estimate for the fatigue crack data

similar observations from Fig. 11.5, and the associated TMSEs can be found in
Table11.2. Together with these comparative results, we can conclude that the results
of the RUL estimate with three-source variability aremuch better than the other cases
in practical applications.
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Chapter 12
RSL Prediction Approach for Systems
with Operation State Switches

12.1 Introduction

Predicting the residual life is of significant importance in proactive maintenance, and
prognostics and health management of systems [1–3]. Many highly critical systems
in military and aerospace fields, like missiles, rockets, and their associated systems,
are required of long-term storage before used [4–6]. For such systems, storage is an
essential part of their lifecycles and the operating time of such systems is usually very
short compared with the time in storage. Therefore, the investigation of the residual
storage life (RSL) prediction is of significant importance in that it can help to plan
efficient monitoring policy to extend the system’s life.

Thanks to recent advances in sensor and conditionmonitoring (CM) technologies,
the last decades have witnessed a great deal of efforts made to predict the residual life
of systems using sensor signals [7]. In literature, sensor signals used in prognostics
mainly include health monitoring data of the deterioration process of a system over
time, since most failures of assets arise from a degradation mechanism and there are
characteristics that deteriorate over time. Examples include gyroscopes in inertial
navigation platforms of rockets, batteries, motor drives, and capacitors in analog
electronic circuits [8–11]. However, current works mainly focus on predicting the
residual life of continuous operating systems based on their stochastic degradation
signals and the scale for the predicted residual life is therefore the continuous oper-
ating time [7, 12, 13]. There is neither the storage concept nor the operation state
switches for these systems.

To our knowledge, the reports about the RSL prediction for systems with switches
between the working state and storage state are very limited. Because it is often
deemed that the system’s performance is unchanged when it is in storage or non-
operating conditions. However, this does not signify no degradation in the system
performance. For some systems not used frequently, such as weapon systems, inertial
devices equipped in rockets, and so on, their performance may decrease gradually
when they are in storage, due to the changes of external or environmental factors,
such as temperature, humidity, and man-made interference [14]. In practice, such
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critical systems are always in the storage condition during their lifecycles unless
somemissions are required to run such systems. Besides, to ensure high precision and
high stability once such critical systems are put into battlefield or military exercises,
even after long-term storage, routine CM is also required to put these systems into
operating after storing such systems for several months, so as to be familiar with
their performance characteristics and health conditions.

Generally, the operating of such systems tends to significantly speed up the degra-
dation of systems compared with the case in storage. Take the inertial device (e.g.,
gyroscopes, which own electromechanical structures) used in rockets for example,
the lifetime of such device is about 200h in continuous operating condition due to
the wear of the gyroscope’s electric motor [15]. However, its lifetime in the storage
condition could be several years because of no wear. In addition, the observation
from the degradation data of gyroscopes indicates that the values of gyroscopes’
drift before and after storage exhibit an increasing trend, though such increase is not
significant in a short-term storage period as compared with the quick degradation in
the operating period. But the effect of long-term storage cannot be neglected. This
phenomenon encourages us to consider the prediction of the RSL to be essential
since the degradation also occurs in the storage condition, even though with a low
degradation rate. In addition, the operating of such system is basically driven by the
mission or routine CM; and therefore the associated duration of the system’s work-
ing is frequently random. As a result, the transitions between the working state and
storage state are random.

Together with the above discussions, there are two main characteristics of the
concerned systems in this chapter: (1) the degradation rate depends on the system’s
operation state; and (2) the system’s operation process experiences a number of state
transitions between theworking state and storage state. Accordingly, two challenging
issues for a success of predicting the RSL of such system are how to establish
the linkage between the degradation process and the system operation state, and
how to formulate the probabilistic law of the number of state transitions and their
transition times, so as to incorporate the future possible transitions into the RSL
prediction. Unfortunately, to the best of our knowledge, these issues have not been
fully investigated despite their potential in practical applications, and the purpose of
this chapter is therefore to shorten such a gap by providing a degradation modeling
framework for RSL prediction.

The main contributions of this chapter are summarized as follows. (1) Using the
monitored degradation data in the working state, we present a novel degradation
model to account for the dependency of the degradation process on the system’s
operation states, where a two-state homogeneous continuous-time Markov chain
(CTMC) is used to approximate the switching process between the working state
and storage state. The reason selecting the CTMC is twofold. On the one hand,
there are two states in the system’s operation process and both their transitions and
sojourn times are random. In this case, the CMTC provides a natural tool to describe
such random state transition mechanism [16, 17]. On the other hand, this kind of
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stochastic processes affords a great deal of modeling flexibility and appealing prop-
erties including the explicit law of the state transition in the future time span, which
facilitates the computation. (2) Under Bayesian paradigm, the posterior probabilis-
tic law of the number of state transitions and their transition times are derived and
the posterior estimates of the parameters in the presented model can be derived and
updated by the CM data. This makes the most recently estimated values accurately
reflect the current reality of the system. (3) The formulation for the RSL prediction is
established, which explicitly accounts for the effect of state switches on the RSL pre-
diction and incorporates the probabilistic law of the number of state transitions and
their transition times in the future. To be solvable, a numerical simulation algorithm
is provided to calculate the distribution of the predicted RSL. Finally, we demonstrate
the proposed approach by a case study of the inertial platform.

The remainder parts are organized as follows. Section12.2 provides the literature
review related to theRSLprediction.Theproblemdescription is given inSect. 12.3. In
Sect. 12.4, we formulate the distribution of state transitions between theworking state
and storage state. Section12.5 models the system’s degradation process to predict
the RSL and gives the simulation-based solution algorithm. In Sect. 12.6, we provide
a case study for demonstration.

12.2 Literature Review

Traditionally, if the past failure data from either fields or experiments are available,
the storage lifetime can be estimated from the failure data of systems using likelihood-
based inference methods [4, 5]. However, for expensive and highly reliable assets,
failure data are scarce or limited, or the time for data acquisition is very consuming,
even in the accelerated condition. Another feature of this kind of methods is to make
predictions for a population of systems, rather than a specific system in service as
the CM data for this individual system are not considered. These limitations restrict
the applications of failure data based storage lifetime estimation methods.

In practice, most failures of assets arise from a degradation mechanism and there
are characteristics that deteriorate over time, such as the drift of gyroscopes in iner-
tial navigation platforms of rockets, batteries, motor drives, and capacitors in analog
electronic circuits [8–11, 18, 19]. Therefore, the monitored degradation data of these
characteristics can be used as a feasible alternative for life estimation task (see [7]
for a comprehensive review). However, the works surveyed in [7] mainly focus on
estimating the residual life of continuous operating systems. There is neither the
storage concept nor the operation state switches for these systems. Very few efforts
have been made to address the degradation process which involves switching points
[20, 21]. Note that the common shared by these relevant works is that the switching
points are assumed to be deterministic and the possible state transitions in future time
span are not considered in the life prediction. Themost recent work in [22] developed
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a residual life prediction approach for the system with a single but random switching
point. The random switching point is estimated within a Bayesian framework. How-
ever, once the degradation process goes into the second stage, there are no operation
state switches as if the system operation state is fixed. Thus, these surveyed methods
are not suitable to predict the RSL since the aforementioned characteristics of our
concerned systems cannot be sufficiently considered by these methods.

The other line of research possibly related to the concerned problem tries to pre-
dict the system’s residual life by considering the environmental effect on the system’s
degradation, where the environments could be either time-varying or random [23].
However, the basic assumption in these works is that the future environments are
unchanged. From these recent works, we can observe that they all focus on continu-
ous operating systems and the possible environmental changes in the future are not
appropriately considered, but the operation state switches are the primary feature
having to be modeled for reasonable RSL predictions. Thus, it is desired to develop
a new method to predict the RSL by considering the switches between the system’s
operation states.

12.3 Problem Description for RSL Estimation

Let the stochastic process {X (t), t ≥ 0} denote the underlying degradation process
of the system.Without loss of generality, we simply assume the starting reading x(0)
for the degradation process to be fixed. During the system’s operation process, the
system can occupy one of two possible states: the working state and the storage state.
Moreover, the transitions and state sojourn times are random. In the working state,
the system may suffer additional load and environmental patterns. Therefore, it is
reasonable to assume that the system will degrade in a higher degradation rate than
the case in the storage state. The system’s lifetime is defined as the first passage time
(FPT) that the degradation process {X (t), t ≥ 0} hits a failure threshold w, which
can be determined by expert knowledge or well-accepted industrial standards (e.g.,
ISO 2372 and ISO 10816 for vibration level) [24].

From the above general description, we know that at each time t , the system can
only occupy one of the operation states in a state set Ψ = {1, 2}, where “1” denotes
theworking state and “2” the storage state. Let ν : [0,∞) → Ψ be a deterministic and
piecewise constant function so that ν(t) represents the system operation state at time
t . Without loss of generality, we assume ν(0) = 1. Under this setting, the system’s
operation states are sequential but the duration of each state is random. Further,
we define a degradation rate function λ : Ψ → �+ so that λ (ν(t)) represents the
system’s degradation rate at time t . For example, if the system is at the kth operation
state at time t , then ν(t) = k and λ (k) is the degradation rate of the kth operation
state, where k = 1, 2. For notation brevity, we simplify λ (k) as λk throughout the
remaining parts.
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Under the above settings, the evolution of the monitored degradation process
over time is described by a Wiener process-based degradation model with piecewise
constant drift coefficients as follows:

X (t) = x(0) +
∫ t

0
λ (ν(u))du + σ B(t). (12.1)

where σ(σ > 0) is the diffusion parameter representing the common character
shared by both operation states, and {B(t), t ≥ 0} is a standard Brownian motion
(BM) process, with σ B(t) ∼ N (0, σ 2t) for t ≥ 0. This term characterizes the
degradation effect that cannot be attributed to the system operation process.

The main objective here is to estimate and update the RSL distribution of the
system based on the discretely observed information up to the current time. Here,
the observed information up to the current time includes twofold: the degradation
data and the information regarding the transition times and transition numbers of the
system’s operation states. Suppose the degradation in the working state is discretely
monitored at times 0 = t0 < t1 < · · · < ti and let xk = X (tk) denote the degradation
observation at time tk , where k = 0, 1, . . . , i . The set of the degradation observations
up to the current time ti is represented by X i = {x0, x1, x2, . . . , xi }. In addition, we
can actually observe the transition times of the system’s operation states up to ti .
Therefore, the set of the transition times and the transition numbers of the system’s
operation states up to ti is denoted as C i = {

u j , n(ti ) : j = 1, 2, . . . , n(ti )
}
, where

u j is the j th state transition time before ti and n(ti ) is the cumulative number of state
transitions up to ti . Under these settings, we know that the system’s operation process
will maintain the state ν(u j−1) over the interval [u j−1, u j ), j = 1, 2, . . . , n(ti ),
u0 = 0.

Based on the above settings, the storage lifetime of the system can be defined
using the concept of the FPT as [24]

T = inf {t > 0 : X (t) ≥ w} . (12.2)

As a result, we define the RSL Si of the system at time ti as

Si = inf {si > 0 : X (si + ti ) ≥ w} . (12.3)

with conditional cumulative distribution function (CDF)

Pr(Si ≤ si |X i ,C i ) = Pr

(
sup
si>0

X (ti + si ) ≥ w

∣∣∣∣ X i ,C i

)
, (12.4)

where (X i ,C i ) is the information available up to ti .
In the remaining parts, we will present specific stochastic models and updating

procedures to compute Pr(Si ≤ si |X i ,C i ) for the RSL prediction.
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12.4 Model Formulation for Transitions Between
the Operating State and Storage State

12.4.1 Randomly Varying System Operation Process

In this modeling aspect, we utilize a two-state CTMC to model {ν(t), t ≥ 0}, with
the state set Ψ = {1, 2}, i.e., ν(t) = 1 or ν(t) = 2. The transition rate matrix of

this CTMC is represented as Q =
[−γ γ

υ −υ

]
, where 1/γ and 1/υ are the expected

sojourn times of the working state and storage state, respectively. For notation con-
venience, we let κ = (γ, υ) be the parameter set in {ν(t), t ≥ 0}.

According to (12.3), in order to predict Pr(Si ≤ si |X i ,C i ), it is necessary
to formulate the probabilistic law of the system’s operation state transition times
and the number of the transitions over a future time span. Toward this end, sup-
pose that the system’s current operation state ν(ti ) is known, and define the tran-
sition times over a future time span (ti , s + ti ) as

{
τ0,i , τ1,i , τ2,i , . . . , τNi (s),i

}
and

the according number of transitions in (ti , s + ti ) as Ni (s), respectively, where
τn,i , n = 0, 1, 2, . . . , Ni (s) is the time of the nth transition with ti ≤ τn,i ≤
ti + s and Ni (s) = 0, 1, 2, . . .. Here, it is worth noting that τ0,i is used to rep-
resent the event of no state transition and thus is equal to the current time ti .
Further, given κ , we use fi (τ0,i , τ1,i , τ2,i , . . . , τNi (s),i , Ni (s)

∣∣ κ) to represent the
joint PDF of

{
τ0,i , τ1,i , τ2,i , . . . , τNi (s),i

}
and Ni (s) at ti . Then, given ν(ti ) and κ ,

fi (τ0,i , τ1,i , τ2,i , . . . , τNi (s),i , Ni (s)
∣∣ κ) can be determined by the following theorem.

Theorem 12.1 For a two-state CTMC with the transition rate matrix Q, given the
current system operation state ν(ti ) and κ , fi (τ0,i , τ1,i , τ2,i , . . . , τNi (s),i , Ni (s)

∣∣ κ)
can be formulated as follows.

(1) If ν(ti ) = 1, then fi (τ0,i , τ1,i , τ2,i , . . . , τNi (s),i , Ni (s)
∣∣ κ) can be formulated

as

fi (τ0,i , τ1,i , τ2,i , . . . , τL ,i , Ni (s) = L
∣∣ κ) =⎧⎪⎨

⎪⎩
(γ υ)n e

L∑
k=0

(γ−υ)(−1)k(τk,i−ti)
e−γ s, L = 2n, n = 0, 1, 2, . . .

γ (γ υ)n e

L∑
k=1

(γ−υ)(−1)k(τk,i−ti)
e−υs, L = 2n + 1, n = 0, 1, 2, . . .

(12.5)

(2) If ν(ti ) = 2, then fi (τ0,i , τ1,i , τ2,i , . . . , τNi (s),i , Ni (s)
∣∣ κ) can be formulated

as
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fi (τ0,i , τ1,i , τ2,i , . . . , τL ,i , Ni (s) = L
∣∣ κ) =⎧⎪⎨

⎪⎩
(γ υ)n e

L∑
k=0

(υ−γ )(−1)k(τk,i−ti)
e−υs, L = 2n, n = 0, 1, 2, . . .

υ (γ υ)n e

L∑
k=1

(υ−γ )(−1)k(τk,i−ti)
e−γ s, L = 2n + 1, n = 0, 1, 2, . . .

(12.6)

where τ0,i = ti .

Proof Suppose ν(ti ) = 1 and the case for ν(ti ) = 2 can be proved in the same way.
Let Dk,i denote the time length from the current time ti to the kth transition time over
(ti , s + ti ), e.g., D0,i = τ0,i − ti = 0, where k = 0, 1, 2, . . . , Ni (s). Then, if there is
no state transition in (ti , s + ti ), we have Ni (s) = 0. In this case, we have

Pr(Ni (s) = 0| κ) = e−γ s,

fi (τ0,i , Ni (s) = 0
∣∣ κ) = e−γ sδ(τ0,i ), (12.7)

where δ(τ0,i ) = 1 when τ0,i = ti ; otherwise, δ(τ0,i ) = 0.
If Ni (s) = 1, we have

Pr(τ1,i − ti < D1,i ≤ τ1,i − ti + Δ1, Ni (s) = 1| κ)

= Pr(Ni (τ1,i − ti ) = 0, Ni (τ1,i − ti + Δ1) − Ni (τ1,i − ti ) = 1,

Ni (s) − Ni (τ1,i − ti + Δ1) = 0
∣∣ κ)

= e−γ (τ1,i−ti ) · γΔ1e
−γΔ1 · e−υ(s−τ1,i+ti−Δ1)

= γΔ1e
−(γ−υ)(τ1,i−ti ) · e−(γ−υ)Δ1 · e−υs . (12.8)

Thus, the according PDF is

fi (τ0,i , τ1,i , Ni (s) = 1
∣∣ κ)

= lim
Δ1→0

Pr(τ1,i − ti < D1,i ≤ τ1,i − ti + Δ1, Ni (s) = 1| κ)

Δ1

= lim
Δ1→0

γΔ1e−(γ−υ)(τ1,i−ti ) · e−(γ−υ)Δ1 · e−υs

Δ1

= γ e−(γ−υ)(τ1,i−ti ) · e−υs . (12.9)

Following the same procedure and the principle of mathematical induction, we
can obtain the following results: when L = 2n, n = 0, 1, 2, . . .,

fi (τ0,i , τ1,i , τ2,i , . . . , τL ,i , Ni (s) = L
∣∣ κ)

= (γ υ)n e

L∑
k=0

(γ−υ)(−1)k(τk,i−ti)
e−γ s,
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and when L = 2n + 1, n = 0, 1, 2, . . . ,

fi (τ0,i , τ1,i , τ2,i , . . . , τL ,i , Ni (s) = L
∣∣ κ)

= γ (γ υ)n e

L∑
k=1

(γ−υ)(−1)k(τk,i−ti)
e−υs .

This completes the proof.

For simplifying notation, we denote the future operation state transitions from
current time ti to a fixed future time span s and the according number of state
transitions by a set Fi (s) = {

τ j,i , Ni (s) : τ j,i ∈ (ti , s + ti ], j = 0, 1, . . . , Ni (s)
}
.

This information will be used in deriving the predicted RSL distribution since the
degradation path and the RSL prediction are dependent on the future operation state
transitions and the number of state transitions.

12.4.2 Bayesian Estimation for Parameters in the System’s
Operation Process

Here we first describe a Bayesian framework for updating the parameters in
{ν(t), t ≥ 0}, i.e., κ . Namely, we assume that the parameters in the transition rate
matrix are random with prior distributions and then the Bayesian rule is used to
obtain the posterior estimates of these parameters once C i is available.

Let the prior distribution of κ be p(κ). At the current time ti , the observation
set C i = {

u j , n(ti ) : j = 1, 2, . . . , n(ti )
}
associated with {ν(t), t ≥ 0} is available,

wheremainly contains twokinds of information: the number of the system’s operation
state transitions between theworking state “1” and the storage state “2” in the interval
[0, ti ], and the total dwelling times in “1” and “2” on this interval. Let n1→2(ti ) be the
number of the system’s operation state transitions from “1” to “2” and n2→1(ti ) be the
number from “2” to “1” during [0, ti ], respectively; then n(ti ) = n1→2(ti )+n2→1(ti ).
Further, let d1(ti ) and d2(ti ) be the total dwelling times in the states “1” and “2” during
[0, ti ], respectively; then ti = d1(ti )+d2(ti ).Onceobtainingn1→2(ti ),n2→1(ti ),d1(ti )
and d2(ti ), the likelihood function of κ for the observed C i can be formulated by the
Markov property as

L(κ) = γ n1→2(ti ) exp (−γ d1(ti )) · υn2→1(ti ) exp (−υd2(ti )) (12.10)

To achieve Bayesian updating and consider the fact of γ > 0 and υ > 0, we
assume that the elements in κ have independent gamma prior distributions as γ ∼
gama(α1, β1) and υ ∼ gama(α2, β2) where αk, βk, k = 1, 2 are the shape and scale
parameters for γ and υ, respectively. Thus we have p(κ) = p(γ ) · p(υ), where the
PDFs of γ and υ are formulated as
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p(γ ) = γ α1−1 exp(−γ /β1)

Γ (α1)β
α1
1

for γ > 0

p(υ) = υα2−1 exp(−υ/β2)

Γ (α2)β
α2
2

for υ > 0.
(12.11)

By applying the Bayesian formula, the posterior distribution of κ is

fκ(κ |C i ) ∝ L(κ) × p(κ). (12.12)

Based on some mathematical manipulations, we establish the following theorem
for the posterior estimate of κ .

Theorem 12.2 Consider that {ν(t), t ≥ 0} is modeled by a CTMC process with the
transition rate matrix Q and the observations regarding {ν(t), t ≥ 0} up to ti is
C i , from which n1→2(ti ), n2→1(ti ), and d1(ti ) and d2(ti ) are obtained. If the prior
distributions for each element ofκ are gammaas specified in (12.8), then the posterior
distributions for each element of κ are still gamma with the updated shape and scale
parameters (αk,i , βk,i ), k = 1, 2, as follows:

α1,i = α1 + n1→2(ti ), β1,i = (
β−1
1 + d1(ti )

)−1

α2,i = α2 + n2→1(ti ), β2,i = (
β−1
2 + d2(ti )

)−1 . (12.13)

Proof To derive the posterior estimate of κ , we first obtain n1→2(ti ), n2→1(ti ), and
d1(ti ) and d2(ti ) from C i . According to (12.10)–(12.12), we have

fκ(κ |C i ) ∝ L(κ) × p(κ)

∝ (
γ n1→2(ti )+α1−1 exp

(−γ
(
d1(ti ) + β−1

1

)))
· (υn2→1(ti )+α2−1 exp

(−υ
(
d2(ti ) + β−1

2

)))
. (12.14)

By comparing the form in the above equation with the form of p(κ) = p(γ ) ·
p(υ), we learn that the unique solution to the posterior PDF fκ(κ |C i ) satisfying the
condition of a probability measure is

fκ(κ |C i ) = γ α1,i−1 exp(−γ /β1,i )

Γ (α1,i )β
α1,i

1,i

· υα2,i−1 exp(−υ/β2,i )

Γ (α2,i )β
α2,i

2,i

= fγ (γ |C i ) · fυ(υ|C i ), (12.15)

where (αk,i , βk,i ), k = 1, 2 are determined by (12.13).
This completes the proof.

As such, we have

fκ(κ |C i ) = γ α1,i−1 exp(−γ /β1,i )

Γ (α1,i )β
α1,i

1,i

· υα2,i−1 exp(−υ/β2,i )

Γ (α2,i )β
α2,i

2,i

. (12.16)
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As a result, fi (τ0,i , τ1,i , τ2,i , . . . , τNi (s),i , Ni (s)
∣∣C i ) can also be updated by C i as

fi (τ0,i , τ1,i , τ2,i , . . . , τNi (s),i , Ni (s)
∣∣C i ) =∫ +∞

0
fi (τ0,i , τ1,i , τ2,i , . . . , τNi (s),i , Ni (s)

∣∣ κ) fκ(κ |C i )dκ . (12.17)

This updated information will be used to derive the RSL distribution which con-
siders the future state transitions and the according number of transitions in the next
section.

12.5 Model Formulation of the System Degradation
Process to Predict the RSL

This section focuses on formulating the predicted RSL distribution of the system
based on the information (X i ,C i ) available up to ti .

12.5.1 Predicting the RSL Conditional on the Model
Parameters and Fixed System Operation Process

We first reformulate (12.1) into two parts: deterministic and stochastic terms as

X (t) = η(t) + σ B(t), (12.18)

where η(t) = x(0) + ∫ t
0 λ (ν(u))du is the deterministic part and σ B(t) is the sto-

chastic part.
From our formulation of {X (t), t ≥ 0} in Sect. 12.3, we learn that η(t) is a piece-

wise linear function whose line segments are defined by the system’s operation state
transition times {τ j,0} at the initial time t0 = 0, where τ j,0 ∈ F0(t). Namely, if the
system’s operation process is in the kth state during [τ j−1,0, τ j,0), then the degradation
rate over this interval is λk and

∫ t
τ j−1,0

λ (ν(u))du = λk(t−τ j−1,0) for t ∈ [τ j−1,0, τ j,0)

and k = 1, 2. After the j th transition at τ j,0 to the operation state m(m 
= k), the
new degradation rate becomes λm , and so on.

In order to derive the RSL distribution, we first have a look at the distribution of
X (t). Then the probability that the degradation is below w at time t is

Pr (X (t) ≤ w|X0,C0, θ , F0(t))

= Pr (σ B(t) < w − η(t)| X0,C0, θ , F0(t))

= Pr

(
B(t) <

w − η(t)

σ

∣∣∣∣ X0,C0, θ , F0(t)

)
, (12.19)
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where θ is the parameter vector associated with {X (t), t ≥ 0} and {ν(t), t ≥ 0},
consisting of κ and λ1, λ2, σ

2, which will be estimated from the available data. For
notation simplification, we denote θ = (κ,ϑ), where ϑ = (λ1, λ2, σ

2). As such, the
prediction for the storage lifetime T at t0 = 0 can be written as

Pr(T ≤ t |X i ,C i ) = Pr

(
sup
t>0

X (t) ≥ w

∣∣∣∣ X0,C0, θ , F0(t)

)

= Pr

(
sup
t>0

(
B(t) − w − η(t)

σ

)
≥ 0

∣∣∣∣ X0,C0, θ , F0(t)

)
. (12.20)

To further simplify notation, let b(t) = w−η(t)
σ

. Thus, predicting the storage life-
time can be achieved by deriving the probability that {B(t), t ≥ 0} crosses the bound-
ary b(t). The method of this derivation is based on the idea that the event that
{B(t), t ≥ 0} does not cross b(t) over the interval [0,U0] (whereU0 = τN0(t),0 is the
N0(t)th transition time) may be split into N0(t) conditional events that {B(t), t ≥ 0}
does not cross b(t) over the interval [τ j−1,0, τ j,0) given that {B(t), t ≥ 0} does
not cross b(t) over the interval [τ j−2,0, τ j−1,0), where τ j,0 is the j th transition

time. Let b j = b(τ j,0) = w−η(τ j,0)

σ
, j = 0, 1, . . . , N0(t), and further denote

N0(t) as the number of state transitions on the interval [0,U0]. Then we have
[0,U0] = ⋃N0(t)

j=1 [τ j−1,0, τ j,0). After U0, no transition occurs.
Basedon the above settings,wehave the following lemma toderive the distribution

of the lifetime T associated with {X (t), t ≥ 0} given in (12.1).

Lemma 12.1 Let 0 = τ0,0 < τ1,0 < · · · < τN0(t),0 = U0 denote N0(t) transi-
tion times of the system’s operation states and denote b = (b0, b1, b2, . . . , bN0(t))

′.
The probability distribution of the lifetime T associated with {X (t), t ≥ 0} for the
piecewise linear boundary b(t) within [τ j−1,0, τ j,0), j = 1, . . . , N0(t) is given as

Pr(T ≤ t |X0,C0, θ , F0(t)) = 1−
E
[
g
(
B(τ1,0), B(τ2,0), . . . , B(τN0(t),0); b

)∣∣ X0,C0, θ , F0(t)
]
, (12.21)

where the function g (·) is formulated as

g
(
z1, z2, . . . , zN0(t); b

) =
∏N0(t)

j=1
I(z j < b j )

(
1 − exp

[
−2(b j−1 − z j−1)(b j − z j )

τ j,0 − τ j−1,0

])
(12.22)

and I(·) is the indicator function.
The proof of Lemma12.1 can be achieved similarly by the method in [25] with

some minor changes and thus is omitted here. In the following, we focus on pre-
dicting the RSL of the system at ti (ti < Ui ), where Ui = τNi (si ). Suppose the
degradation observations have been obtained at times t0, t1, . . . , ti as X i and let
{ν(t) : ti ≤ t ≤ Ui } denote the future system operation profile from ti to Ui . Now
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the probability distribution of the RSL Si at ti given that the degradation process
has not crossed the threshold w up to ti can be obtained by the crossing probabil-
ity of {X (t), t ≥ 0} to the threshold w. Specifically, we have the following theorem
regarding the probability distribution of the RSL Si at time ti .

Theorem 12.3 Let bi (t) = 1
σ
(w − xi − ∫ t

ti
λ (ν(u))du) for t ∈ (ti , ti + si ] and

Ai (si ) = {
j : τ j,i ∈ [ti , ti + si ]

}
. The conditional probability distribution of the RSL

Si at time ti can be formulated as

Pr(Si ≤ si |X i ,C i , θ , Fi (si )) = 1−
E
[∏

j∈Ai (si )
I(Wi (τ j,i ) < bi (τ j,i )) × (

1 − Λi, j
)∣∣ X i ,C i , θ , Fi (si )

]
(12.23)

with

Λi, j = exp

[
−2

(
bi (τ j−1,i ) − Wi (τ j−1,i )

) (
bi (τ j,i ) − Wi (τ j,i )

)
τ j,i − τ j−1,i

]
,

where Wi (τ j,i ) = B(τ j,i ) − B(ti ), and |Ai (si )| = Ni (si ) + 1 denotes the number of
elements in Ai (si ).

Proof Conditionally on X i , the degradation process can be formulated for each t > ti
as

X (t) = xi +
∫ t

ti

λ (ν(u))du + σ (B(t) − B(ti )) . (12.24)

Then, by utilizing the notation of the RSL realization, si , the degradation process
can be revised for each si > 0 as

X (ti + si ) = xi +
∫ ti+si

ti

λ (ν(u))du + σ (B(ti + si ) − B(ti )) . (12.25)

It can be easily verified that {B(ti + si ) − B(ti ), si ≥ 0} is still a standard BM
over time si [26]. Therefore, the RSL at time ti corresponds to the FPT of {B(ti + si )
−B(ti ), si ≥ 0} crossing the boundary bi (ti + si ), denoted by bi (ti + si ) = 1

σ
(w −

xi − ∫ ti+si
ti

λ (ν(u))du). Applying Lemma12.1, we can directly complete the proof.

Noted that, to evaluate the expectation operator in (12.23), we need the joint PDF
of Wi (τ j,i ), j ∈ Ai (si ). For example, since |Ai (si )| = Ni (si ) + 1, we can represent
Ai (si ) as Ai (si ) = {0, 1, 2, . . . , Ni (si )}, and then by independent increments prop-
erties of the standard BM, the joint PDF of Wi (τ j,i ), j = 0, 1, 2, . . . , Ni (si ) can be
formulated as
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f
(
Wi (τ j,i ) = z j , j ∈ Ai (si )

)

= 1√
2π(τ1,i − ti )

exp

[
− z21
2(τ1,i − ti )

]

×
∏Ni (si )

j=2

1√
2π(τ j,i − τ j−1,i )

exp

[
− (z j − z j−1)

2

2(τ j,i − τ j−1,i )

]
. (12.26)

Remark 12.1 When σ is varying with the states, as the case of the degradation rate
function λ (ν(t)), we can define a function σ : Ψ → �+ so that σ (ν(t)) represents
the diffusion parameter at time t . For example, if the system is at the kth operation
state at time t , then ν(t) = k and σ (k) = σk is the diffusion parameter of the kth
operation state, where k = 1, 2. In this case, (12.19) can be revised as

Pr (X (t) ≤ w|X0,C0, θ , F0(t))

= Pr

(
B(t) <

w − η(t)

σ (ν(t))

∣∣∣∣ X0,C0, θ , F0(t)

)
.

Then, we can define b(t) as b(t) = w−η(t)
σ (ν(t)) . Thus, predicting the storage lifetime

can be achieved by deriving the probability that {B(t), t ≥ 0} crosses the boundary
b(t). According to the above setting, we know that σ (ν(t)) is a piecewise constant
function. As a result, b(t) = w−η(t)

σ (ν(t)) in this case is still a piecewise linear function.
Therefore, similar results to Lemma12.1 and Theorem12.3 can be directly estab-
lished in this case by making some minor changes. �

In the following, we focus on estimating the parameters in {X (t), t ≥ 0}, based
on (X i ,C i ).

12.5.2 Bayesian Estimation for Parameters
in the Degradation Process

In many applications, historical database and empirical knowledge might be avail-
able. By combining both historical and real-time data, we are able to estimate the
unknown parameters in the presented model within a Bayesian framework. Recent
studies about Bayesian-based state and parameter updating can be found in [19, 27,
28]. In this chapter, we develop a Bayesian approach to update the parameters of
the degradation model using prior information estimated from historical data and
real-time degradation observations (X i ,C i ) available up to ti .

The updating for the presented model, according to (12.18), requires to update the
parameters λ1, λ2, and σ 2. For notational brevity, we denote them as a parameter vec-
torϑ . Accordingly, the prior distribution ofϑ is represented as p(ϑ) = p(λ1, λ2, σ

2).
Regarding how to determine the prior distribution, similar method can be used based
on the historical database by referring to [22]. After obtaining (X i ,C i ), the posterior
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distribution of themodel parameters can be calculated under the Bayesian framework
as

fϑ (ϑ | X i ,C i ) = fϑ (ϑ | X i ,C i ) ∝ p(ϑ) × fX i (X i |C i ,ϑ), (12.27)

where fX i (X i |C i ,ϑ) is the joint PDF of the degradation observations X i up to ti ,
given C i and ϑ .

For an illustration, we assume the prior marginal distributions of λ1, λ2, σ
2 are

mutually independent following λ1 ∼ N (μ1, σ
2
1 ), λ2 ∼ N (μ2, σ

2
2 ) and σ 2 ∼

log N (μ3, σ
2
3 ), respectively, where the log-normal distribution is used to ensure

σ 2 > 0. The parameters in these prior distributions can be determined by the histor-
ical database or empirical knowledge. In order to obtain the posterior estimates of ϑ ,
we need to derive the likelihood function fX i (X i |C i ,ϑ). To do so, we consider the
increments X (tk) − X (tk−1), k = 1, 2, . . . , i. From the degradation model, we have

X (tk) − X (tk−1) =
∫ tk

tk−1

λ (ν(u))du + σ (B(tk) − B(tk−1)) , (12.28)

where k = 1, 2, . . . , i.
Thanks to the independent increments property of the standard BM, we know

σ (B(tk) − B(tk−1)) ∼ N (0, σ 2(tk − tk−1)) for k = 1, 2, . . . , i , and they are inde-
pendent of each other. As a result, given C i , we can easily formulate fX i (X i |C i ,ϑ)
as

fX i (X i |C i ,ϑ) =
∏i

k=1
φk(xk − xk−1), (12.29)

where φk(xk −xk−1) is the PDF of a normal random variable with mean
∫ tk
tk−1

λ (ν(u))

du and variance σ 2(tk − tk−1).
Then, the posterior distribution of ϑ is given by

fϑ (ϑ | X i ,C i ) = p(ϑ) ×∏i
k=1 φk(xk − xk−1)∫

ϑ
p(ϑ) ×∏i

k=1 φk(xk − xk−1)dϑ
. (12.30)

From the above procedure, the posterior distribution of ϑ can be updated in line
with the arrivals of the degradation observations when the system is in the working
state.

12.5.3 RSL Prediction Considering the Future Transitions
and Updated Parameters

Based on the result in Theorem12.3 and the posterior estimates of the parameters,
the predicted conditional RSL distribution at time ti can be formulated by the law of
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total probability as (12.31)

Pr(Si ≤ si |X i ,C i ) = E θ,Fi (si )|X i ,C i [Pr(Si ≤ si |X i ,C i , θ , Fi (si ))]

= ∫
θ,τ j∈Fi (si ), j∈Ai (si )

(Pr(Si ≤ si |X i ,C i , θ , Fi (si ))·
fFi (Fi (si )|X i ,C i , θ) fθ (θ | X i ,C i ))dθdτ j ,

(12.31)

where fFi (Fi (si )|X i ,C i , θ) is the joint PDF of the future operation state transition
times and the number of transitions from time ti to ti + si ; fθ (θ | X i ,C i ) is the
posterior estimate of the model parameters; Pr(Si ≤ si |X i ,C i , θ , Fi (si )) is the
RSL distribution given the parameters and future operation profile, determined by
Theorem12.3.

Based on the model development in Sects. 12.4.2 and 12.5.2, we have

fθ (θ | X i ,C i ) = fκ(κ |C i ) · fϑ (ϑ | X i ,C i ), (12.32)

and

fFi (Fi (si )|X i ,C i , θ) = fFi (Fi (si )|κ)

= fi (τ0,i , τ1,i , τ2,i , . . . , τNi (si ), Ni (si )
∣∣ κ), (12.33)

and one of the specifications of fFi (Fi (si )|X i ,C i , θ) is

fFi (Fi (si )|X i ,C i , θ) = fi (τ0,i , τ1,i , τ2,i , . . . , τL ,i , Ni (si ) = L
∣∣ κ), (12.34)

where fi (τ0,i , τ1,i , τ2,i , . . . , τL ,i , Ni (si ) = L
∣∣ κ), fκ(κ |C i ), and fϑ (ϑ | X i ,C i ) are

determined by Theorems12.1 and 12.2 (or (12.16)), and (12.30), respectively.
Therefore, (12.31) can be further written as

Pr(Si ≤ si |X i ,C i ) =
∞∑
L=0

∫
θ ,τ j,i∈Fi (si )

⎡
⎢⎢⎣
Pr(Si ≤ si |X i ,C i , θ , τ0,i , τ1,i ,
τ2,i , . . . , τL ,i , Ni (si ) = L)×
fi (τ0,i , τ1,i , τ2,i , . . . , τL ,i , Ni (si ) = L

∣∣ κ)×
fκ(κ |C i ) fϑ(ϑ | X i ,C i )dθdτ j,i

⎤
⎥⎥⎦ (12.35)

From (12.35), we can also observe the dependency of the predicted RSL on
the degradation observations and the system’s operation progression history up to ti .
However, despite the simple and straightforward formulations, it is not easy to directly
and analytically compute the right-hand side of (12.35) because the computation
involvesmulti-dimensional integration.As such,weneed a simulation-based solution
method to tackle this problem. Targeting this objective, we employ a Monte Carlo
simulation algorithm to calculate Pr(Si ≤ si |X i ,C i ) at time ti for every given si .

Algorithm 12.1 (Simulation-based solution algorithm)
Step 1: Based on (X i ,C i ), calculate the posterior distributions fκ(κ |C i ) and

fϑ (ϑ | X i ,C i ) of κ and ϑ by (12.16) and (12.30), respectively.
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Step 2: Select a sufficiently large number (denoted by M1) to simulate the
realizations of θ from fθ (θ | X i ,C i ). These realizations of θ are expressed by
θ r = (κr ,ϑr ), r = 1, . . . , M1, where κr is generated from fκ(κ |C i ) and ϑr from
fϑ (ϑ | X i ,C i ).
Step 3: Select the number of the future system’s operation process profiles for

each realization θ r of θ , Kr , r = 1, . . . , M1.
Step 4: For each θ r and Kr , given ν(ti ) and si , simulate system’s operation

process paths on the interval [ti , ti + si ],
{
νr,m(u) : ti < u ≤ ti + si

}
for m =

1, 2, . . . , Kr and obtain the future system’s operation profile sets Fi,r,m(si ) =
{τ0,i,r,m, τ1,i,r,m, . . ., τNi,r,m (si ),i,r,m, Ni,r,m(si )} and Ai,r,m(si ) = {0, 1, 2, . . . Ni,r,m(si )},
where r = 1, . . . , M1. If Ni,r,m(si ) = 0, then τ0,i,r,m = ti , representing no transition.

Step 5: For each Fi,r,m(si ), calculate bi,r,m(τ j,i,r,m) = xi +
∫ τ j,i,r,m

ti
λ (ν(u))du, j =

0, 1, . . . , Ni,r,m(si ), where m = 1, 2, . . . , Kr and r = 1, . . . , M1.
Step 6: Calculate Pr(Si ≤ si |X i ,C i , θ r , Fi,r,m(si )) via Theorem12.3 for each

sampling path generating Fi,r,m(si ), wherem = 1, 2, . . . , Kr . Specifically, we com-
pute Pr(Si ≤ si |X i ,C i , θ r , Fi,r,m(si )) by the following steps:

1. Select a sufficiently large number (e.g. M2) of realizations for Ni,r,m(si )-
dimensional BM process {B(τ j,i,r,m) − B(ti ), j = 1, . . . , Ni,r,m(si )}.

2. For each l = 1, 2, . . . , M2, generate the lth realization zlj,i,r,m of B(τ j,i,r,m) −
B(ti ), j = 1, . . . , Ni,r,m(si ). This can be achieved by the simulation technique of
a standard BM based on the independent increments property of BM.

3. By the law of large numbers, for sufficiently large M2, the conditional RSL dis-
tribution can be calculated by

Pr(Si ≤ si |X i ,C i , θ r , Fi,r,m(si )) ≈ 1 − 1

M2

∑M2

l=1
gli,r,m, (12.36)

where gli,r,m is given in (12.37):

gli,r,m =
∏

j∈Ai,r,m (si )
I(zlj,i,r,m < bi,r,m(τ j,i,r,m))×

⎛
⎝1 − exp

⎡
⎣−

2
(
bi,r,m(τ j−1,i,r,m) − zlj−1,i,r,m

) (
bi,r,m(τ j,i,r,m) − zlj,i,r,m

)
τ j,i,r,m − τ j−1,i,r,m

⎤
⎦
⎞
⎠ .

(12.37)

Step 7: By the law of large numbers, for sufficiently large M1 and Kr , the RSL
distribution can be calculated by

Pr(Si ≤ si |X i ,C i ) ≈
1

M1

∑M1

r=1

(
1

Kr

∑Kr

m=1
Pr(Si ≤ si |X i ,C i , θ r , Fi,r,m(si ))

)
. (12.38)
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Based on the above algorithm, we can also obtain the conditional reliability, point
estimate, and confidence interval (CI) of the predicted RSL at ti . Specifically, the
according conditional reliability at ti can be computed as

R(si |X i ,C i ) = 1 − Pr(Si ≤ si |X i ,C i ). (12.39)

For the point estimate of the predicted RSL at ti , we use the median of the
RSL distribution computed at ti , denoted by ŝi , which can be obtained by solving
Pr(Si ≤ ŝi |X i ,C i ) = 0.5. Here the median is chosen as an approximate value for
the point estimate of the predicted RSL since the distribution of the RSL is often
highly skewed and thus it is reasonable to use the median as a measure of central
tendency rather than the mean. Another quantity of interest is the CI of the predicted
RSL. For any constant 0 < α < 1, let sα,i be the time satisfying

Pr(Si ≤ sα,i |X i ,C i ) = 1 − α. (12.40)

Then we can employ (12.35) and the aforementioned simulation algorithm to
calculate sα/2,i and s1−α/2,i numerically. Thereafter, the 100%(1 − α) CI of the
predicted RSL at ti is represented as (s1−α/2,i , sα/2,i ).

12.6 Case Study

In this section, we provide a practical case study for the inertial platform used in
the inertial navigation systems (INS) of rockets to illustrate the application of the
developed RSL prediction approach.

12.6.1 Background and Data Description

As a key system, an inertial platform, which is a electromechanical system, plays
an important and irreplaceable role in the INS. Its health condition has a direct
and dominant influence on the navigation precision. For an illustrative purpose, we
provide an illustration of the structure of the inertial platform in Fig. 12.1, which
consists of gyroscopes, motors, accelerometers, etc. The sensors fixed in an inertial
platform include three gyroscopes and three accelerometers, which measure angular
velocity and linear acceleration, respectively.

Most of the inertial platform’s lifecycle is spent in the storage condition, unless
some missions or routine CM are required to put it into the working state. Namely,
the inertial platform will experience switches between the working state and storage
state. For an illustrative purpose, we provide an illustration of a deformed bearing
of the motor (see Fig. 12.2), which was obtained by scanning electron microscopy
S-3700Nwith amplification factor 70. It can be found that themaximum length of the
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Fig. 12.1 Illustration of the structure of the inertial platform

Fig. 12.2 Illustration of a deformed bearing
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metal flake is 155µm. Historical statistical data show that almost 80% of the failures
of the INS result from the inertial platform due to the wear of its bearings, whose
performance is reflected by the drift values measured by gyroscopes. It is therefore
natural to utilize the collected drift data as the degradation signals to predict the RSL
of the inertial platform.

The gyroscope fixed on the inertial platform is a electromechanical structure
having two degrees of freedom from the driver and sense axis. Generally, the drift
measurement along the sense axis, KSX , plays a dominant role in the health assess-
ment of the inertial platform. In our study, we use the CM data of KSX to predict the
RSL. It is noted here the selection of the failure threshold is an important problem
in practice. In the case study of this chapter, the failure threshold w is determined
according to the performance requirement of the INS. In the INS health monitoring
practice, it is required that KSX should not exceed 0.36◦/h, i.e., w = 0.36◦/h. This
threshold is predetermined at the design stage and is strictly enforced in practice
since an INS is a critical device used in a navigated rocket system.

The used data are collected from January 2004 to April 2008 for a real-life inertial
platform armed in the INS, where a PC-based data acquisition system is used to
acquire and store the drift data. The number of the CM data in this data set is
109, including the initial value x(0) = 0. In addition, this data set records the
system’s operation information during January 2004–April 2008 such as the times
for each transition between the working state and storage state, and the number of
total transitions. Namely, the system’s operation information C i required at each
CM time in this chapter is readily available. In addition, the storage lifetime of this
investigated inertial platform is known, since the drift value of the gyroscope has
crossed the failure threshold and the recorded failure time corresponds to the storage
lifetime, i.e., 37,200h. Thus, the actual RSL at each CM time is known and used
for subsequent validation. Here, a year is equal to 8760h (a year = 365×24h). For
illustration, the partial system’s operation information from January 2004 to January
2008 is summarized in Table12.1.

The data of the monitored drift coefficient KSX in the working state can also
be obtained over the number of the CM. Note that, to protect sensitive proprietary
information, we have had to change the timescale and make some manipulations on

Table 12.1 Partial system’s
operation information from
January 2004 to April 2008

ti (hours) System operation
state

Number of the CM

0–15 “1” 6

15–2880 “2” 0

2880–3000 “1” 8

3000–7320 “2” 0

7320–7330 “1” 4

7330–8740 “2” 0
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Fig. 12.3 The CM data of KSX collected in the working state

the data but not lose the basic features in the data. Here we illustrate the CM data
from January 2004 to April 2008 in Fig. 12.3.

From the data illustrated in Fig. 12.3, which corresponds to the system’s operation
process given in Table12.1, it can be observed that the system will partially degrade
during the storage period as the increments of the degradation before and after the
storage are positive for our case of the inertial platform. This is consistent with the
previous discussions. In the following,we utilize the data described above to illustrate
the prediction results of the RSL.
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12.6.2 Results and Discussions

In order to apply our proposed approach for the RSL prediction, we first need to
specify the hyper-parameters in prior distributions of κ and ϑ . The hyper-parameters
in prior distributions of κ and ϑ can be determined by the history data or empir-
ical knowledge. For example, the routine CM often lasts fifteen hours while the
duration of each storage period is usually about three or four months. Based on
the history data or engineering knowledge of the inertial platform, we empirically
specify the hyper-parameters in prior distributions as follows: γ ∼ gama(13.6, 1.1),
υ ∼ gama(16, 180), λ1 ∼ N (0.0013, 4 × 10−8), λ2 ∼ N (9 × 10−6, 1.4 × 10−12),
σ 2 ∼ log N (−5.49, 1.05 × 10−10). In such cases, we have E[γ ] = 14.96 (about
15h) and E[υ] = 2880 (about 4 months).

Based on the specified prior parameters, we can use the CM data illustrated in
Fig. 12.3 and Table12.1 to predict the RSL distribution of the inertial platform, i.e.,
Pr(Si ≤ si |X i ,C i ). In performing the RSL predictions, the simulation algorithm in
Sect. 12.5 is used, in which we set M1 = 1000, M2 = 1000, and Kr = 500 for each
r ∈ {1, 2, . . . , 1000}. The calculated values of Pr(Si ≤ si |X i ,C i ) at the 6th CM
point and the 100th CM point by the simulation algorithm are illustrated in Fig. 12.4
as follows.

From Fig. 12.4, it is found that the presented method can achieve the RSL pre-
diction and find the median of the RSL at each CM point by solving Pr(Si ≤ si |X i ,
C i ) = 0.5 numerically. To have a further look at the accuracy of the presented
method in predicting the RSL, we calculate the point estimations by median and the
CIs at several different CM points, as summarized in Table12.2, where the relative
error (RE) of the observed RSL and the predicted RSL are used for comparisons.
Let S̃i denote the actual RSL at ti , and let ŝi be the predicted RSL by its median at

ti . Hence, the RE for the RSL at ti is defined as REi =
(∣∣∣S̃i − ŝi

∣∣∣ /S̃i
)

× 100.

From Table12.2, we have a conclusion that the accuracy of the predicted RSL by
our presented approach will be improvedwith the accumulation of the CMdata in the
working state. Also, all REs between the actual RSL and the predicted RSL are below
15%. This further reflects the effectiveness of our method. By contrast, if we only
consider the working state, then the predicted storage lifetime is about 280h, which
is very poor, since the long-term storage period is not taken into account. On the
other hand, if we ignore the loss of the life in the working period, then the predicted
storage lifetime will be more than seven years corresponding to 61,320h, which is
also unacceptable. In contrast, our presented method can generate reasonable results
and has the potential application in predicting the RSL.

It is noted that, to implement the presented RSL prediction approach, the hyper-
parameters in prior distributions should be first specified. In the above computational
results, the hyper-parameters are empirically determined. To have a look at the robust-
ness of the RSL prediction over hyper-parameters, we randomly generate 100 sets
of hyper-parameters of prior distributions and then perform the RSL predictions at
the 6th CM point, the 50th CM point and the 100th CM point with these hyper-
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Fig. 12.4 Values of Pr(Si ≤ si |X i ,C i ) at the 6th CM point and the 100th CM point

Table 12.2 Estimated mean
RSLs (hours) and
corresponding REs

Predicted
RSL

RE (%) 95% CI

The 6th CM
point

41,500 11.56 (34,051,
49,671)

The 50th CM
point

18,026 8.45 (14,982,
21,456)

The 100th
CM point

3625 4.52 (3064, 4240)
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Table 12.3 Mean statistics of the RSL predictions with randomly selected hyper-parameters

Predicted RSL RE (%) 95% CI

The 6th CM point 45,299 21.82 (41,562, 52,639)

The 50th CM point 18,770 12.93 (15,108, 22,627)

The 100th CM point 3705 6.83 (3147, 4352)

parameters by the simulation algorithm. The mean statistics of the computational
results are summarized in Table12.3.

From the results in Table12.3, we can find that, in contrast with the results in
Table12.3, the accuracy of the RSL predictions is affected by the selection of hyper-
parameters, particularly at the early stage with less data. However, as the CM data
are accumulated, the impact of hyper-parameters can be effectively reduced and
the accuracy of the RSL predictions can be improved to the same level as that of
Table12.2. This indicates that the presented RSL prediction approach has certain
robustness over hyper-parameters in the prior distributions and thus has application
potentials.
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Chapter 13
Reliability Estimation Approach for PMS

13.1 Introduction

Many complex systems are designed to perform missions that consist of several
phases in which the deterioration and configuration of systems may change from
phase to phase. These systems are called phased-mission systems (PMSs) [1]. PMSs
are formally defined to be the systems subject to multiple, consecutive, nonoverlap-
ping phases of operation required to finish the final product or service [2]. A typical
PMS is the on-board systems for the aided guide of aircraft, whose mission consists
of takeoff, ascent, cruise, approach, and landing phases. For mission success, all
phases must be completed without failure. Other PMSs include safety-critical sys-
tems (such as aerospace systems and weapon systems), and modern manufacturing
processes (e.g., assembly, machining, semiconductor fabrication and pharmaceutical
manufacturing) [3]. As an important measure for system design, operation and main-
tenance of PMSs [4, 5], reliability can be used to quantify the performance of PMSs.
Accurate estimation of the reliability is very helpful for efficient maintenances and
logistic supports of such systems, which actually lead to lifecycle cost reduction and
the avoidance of catastrophic failures.

In thepast decades,manymethodshavebeendeveloped to analyze the reliability of
PMSs based on fault trees (FTs). Esary and Ziehms in [1] first introduced a FT-based
method to transform a phased mission into an equivalent single phase mission, and
analyzed the system’s reliability. Burdick et al. in [6] andVeatch in [7] analyzedPMSs
with non-repairable components. Alam and Al-Saggaf in [8] analyzed repairable
systems with deterministic phase durations. Kim and Park in [9] considered systems
with generally distributed phase durations. Dugan in [10] proposed a methodology
which combined all phases into onemodel and used a standardMarkov chain solution
technique to calculate different reliability measures. Vaurio in [11] analyzed PMSs
with repairable and non-repairable components using FTs.

Due to the dependencies across phases, FT analysis of PMSs is computationally
expensive to calculate the reliability of a mission, if the system structure is complex,
or if there are a high number of phases [12]. Several chapters tried to reduce the

© National Defense Industry Press and Springer-Verlag GmbH Germany 2017
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computational burden [13–16]. In [16], the phased algebra was used together with
noncoherent mission FTs to directly evaluate the probability of failure in individual
phases. However, FT-based methods are still unsuitable to analyze large systems,
particularly thosewith noncoherent FTs. This led to the appearance of binary decision
diagram (BDD) techniques [5, 12, 17].

Zang et al. in [17] developed a BDD-based algorithm for non-repairable systems
with general failure distributions. Xing and Dugan in [18] analyzed a more general
class of systems including PMSs with combinational phase requirement and imper-
fect coverage. Using BDD, Tang and Dugan in [19] analyzed PMSs with multimode
failures, in which different failure modes had different failure rates and effects. Tang
et al. in [20] analyzed the reliability of a PMS with common cause failures. This
model was extended by Xing [21] to include imperfect coverage and multiple com-
mon causes. Wang and Trivedi in [22] proposed a hierarchical modeling approach
based onBDD for PMSswith repairable components,where the deterioration process
of each component was modeled by a finite state continuous-time Markov chain.

Due to the nature of the BDD, the cancelation of common components among
phases can be combined with the BDD generation, without additional operations,
and the SDP can be implicitly represented by the final PMS BDD. Zang et al. in [17]
showed that BDD-based algorithm was more efficient than other algorithms in both
computation time and storage space. To apply the technique to reliability analysis,
FTs can be analyzed through the BDD method. However, for the BDD-based FT
analysis of PMSs, it is important to generate the PMS BDD efficiently. For the BDD
generation from a FT, the ordering of variables is critical since the size of a BDD (the
number of nodes) heavily depends on the ordering. But the problem of computing
the ordering that minimizes the size of the BDD is itself a NP-Complete problem
[23]. Çekyay and Özekici in [24] analyzed the reliability of PMSs under a general
setting by proposing different reliability definitions. In a recent study, Çekyay and
Özekici in [25] analyzed MTTF and availability of PMSs under the maximal repair
policy where the mission process was represented by a semi-Markov process with
random sequence and durations of phases.

By the literature, current works strongly depend on the knowledge of the structure
of PMSs to generate the FT or BDD and then to use logic rule to estimate the
reliability of PMSs. However, in practice, the structure of the mission system is too
complicated and the complete knowledge is not always available. This leads to a great
difficulty to apply existing approaches for reliability estimation of a practical PMS.
In addition, current approaches focus more on a population of common type of PMSs
and there is no work directly establishing the linkage between the reliability and the
historical data/real-time CM information of individual PMS in service. Most works
only consider the static scenario in off-line manner. As far as we know, real-time
reliability analysis is desirable in practice so that the reliability of a PMS is repeatedly
updated during its operation to ensure the most recently calculated reliability value
accurately reflects the current reality of the PMS. Finally, most works assume that the
degradation of the PMS follows a finite state continuous/discrete-timeMarkov chain.
This makes the lifetime estimation of the PMS depend only upon the current state
but ignore the possible history information to date due to the memory-less nature
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of Markov chain. The focus of this chapter is to develop a reliability method for
PMS when the structure of the PMS is not available but the monitored data can be
collected.

In this chapter, we will use the available CM data to analyze the reliability of a
PMS in service. We present a novel condition-based approach to estimate the relia-
bility of PMSs using the CM information and the degradation data of such system
under dynamic operating scenario. This chapter aims to estimate the reliability for
an individual PMS in service but not for a population, which is totally different from
most existing methods only considering the static scenario without using the real-
time information. In order to establish a linkage among the reliability, the historical
data, and real-time information of the individual PMS, we adopt a stochastic filtering
model to model the phase duration and obtain the updated estimation of the mission
time by Bayesian law. At the meantime, the lifetime of PMS is estimated by degra-
dation data based on a Brownian motion (BM) with a time-varying drift coefficient
depending on the mission phase, in which the lifetime distribution of PMS can be
updated under Bayesian framework once new information is available. Unique to this
work is the union of the CM data and degradation data of PMS to real-time estimate
the mission reliability through the estimated distribution of the mission time in con-
junction with the estimated lifetime distribution, which considers the dependency of
the degradation rate of PMS on mission phase. We demonstrate the usefulness of the
developed approach via a numerical example and a case study.

The main differences between our work and existing works are summarized in
the following aspects. (1) We do not use a FT or a BDD to model PMSs while most
existingworks required the structural knowledge of themission system in each phase.
(2) We use the CM information and the degradation data to estimate the reliability of
PMSs under dynamic operating scenario considering the dependency of the degra-
dation rate of PMS on mission phase. However, most existing methods only consider
the static scenario without using real-time information. (3) We consider the mission
reliability estimation for an individual PMS in service while previous studies only
considered the mission reliability for a population of the same type of PMSs. (4)
The mission phase durations in our work can follow log-normal distributions esti-
mated from theCM informationwhile exponential distributionswere used in existing
works. (5) The lifetime of the mission system, the posterior probability of the system
phase duration and the mission time depend on the history of observations. Hence
the estimated mission reliability is also dependent on the history of observations and
free of the structural constraints.

The remainder parts are organized as follows. In Sect. 13.2, we present the nota-
tion, the problem description, and the model assumptions. In Sect. 13.3, we formu-
late the mission time estimation from the CM information. Section13.4 formulates
the degradation data-based lifetime estimation for the mission system. Section13.5
presents the formulations for the mission reliability estimation. In Sect. 13.6, we pro-
vide a numerical study and a case study to illustrate the effectiveness of the developed
approach.
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13.2 Assumptions and Problem Description

13.2.1 Problem Description

In general, there are two main definitions of the reliability of PMSs. One is the
probability that the mission can be successfully accomplished before a given time
under the condition that the system lifetime is longer than the total mission time.
Another one is the probability that the mission can be successfully accomplished
before the system fails, i.e., the mission system lifetime is longer than the total
mission time. If we can model both the mission system lifetime and mission phase
duration, the mission reliability is estimated straightforwardly through evaluating
the probability of events corresponding to the above two definitions, respectively.

Specifically, we consider a PMS having N phases. Let Xn denote the duration of
the nth phase, which is a random variable in �+ = [0,+∞). Let a random variable
TM denote the total time of completing the mission. In principle, TM can be repre-
sented as TM = ∑N

n=1 Xn . If there are some conditional probability linkages among
Xn, n = 1, . . . , N , such as the PDF pXn |X1,...,Xn−1 (xn |x1, . . . , xn−1 ) for 2 ≤ n ≤ N ,
the PDF of the mission time TM can be formulated. However, this mechanism is
aimed for the population of mission systems with the same type. For a specific sys-
tem in service, we need to estimate the remaining mission time at each phase using
the history of the CM data to the current time ti , denoted by Φi,n , which is related to
Xn . Then, we represent the estimated PDF of the mission time as p TM |Φi,n ( tm | Φi,n),
which is relying on the CM information to date. In order to characterize the life-
time of the mission system, let a random variable Td denote the lifetime of the
mission system. To estimate the PDF of the lifetime of the mission system from the
observed degradation data to ti , denoted by Yi , we use the degradation modeling
technique and then the estimated PDF of Td can be obtained, which is represented
as fTd |Yi ,Ci ,Φi,n (t |Yi ,Ci , Φi,n).

After obtaining the estimated p TM |Φi,n ( tm | Φi,n) and fTd |Yi ,Ci ,Φi,n (t |Yi ,Ci , Φi,n),
the main objective is to compute the above two kinds of the mission reliability. Here
we summarize the general formulations for these two cases:

• To compute the probability that the mission can be successfully accomplished
before a given time R under condition that the system lifetime Td is longer than
the total mission time TM at each phase, i.e., Pr(TM ≤ R| Td ≥ TM ,Yi ,Ci , Φi,n).

• To compute the probability that the mission can be successfully accomplished
before the system fails, i.e., Pr(Td ≥ TM | Yi ,Ci , Φi,n).

For an intuitive vision, a schematic of degradation progression and three-phase mis-
sion process is illustrated in Fig. 13.1.
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Fig. 13.1 Schematic of degradation progression and three-phase mission process (©—possible
failure)

13.2.2 Assumptions

In this following, we summarize the main assumptions used in this chapter.
(1) No maintenance activities are involved during the process of carrying out a

mission.
(2) The mission consists of a set of consecutive phases.
(3) For mission success, all phases must be completed.
(4) The phases of mission are sequential, i.e., the order of the mission phase is

deterministic.
(5) The durations of the different phases are dependent.
(6) Duration of every phase is random following a log-normal distribution and the

exact time of ending phase is unknown during the process of the operating phase,
but the exact ending time is known once the phase is completed.

(7) The degradation process is dependent on the mission process and different
mission phases correspond to different degradation rates.

(8) Failure resulting from degradation will lead to a mission failure.
(9) Given a particular phase and the observed history in this phase, the duration

of the future phase is only dependent on the current and previous phases’ duration,
e.g.,

p Xn+1|X1,...,Xn ,Φi,n ( xn+1| x1, . . . , xn, Φi,n) = p Xn+1|X1,...,Xn ( xn+1| x1, . . . , xn).
To clarify the above assumptions, we give the following remark.
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Remark 13.1 Assumption 1 is commonly used in degradation practice. The motiva-
tion is that once the system is maintained such as replacement, the system renews.
Then the degradation process restarts from the initial state. Assumptions 2–4 come
from the definition of the PMS.Assumption 5 is easily understood because the phases
of mission are sequential according to Assumption 4. The first part in Assumption 6
makes us focus on the random phase duration with a general distribution rather than
the exponential distribution and the second part is practical since the sequence of the
mission phase is deterministic as revealed by Assumption 4. Assumption 7 incor-
porates the effects of the mission process on the degradation process. Assumption
8 follows from the definition of the mission reliability. Assumption 9 is for model
simplification, but is also practical. For example, at the first phase, we only observe
the CM information Φi,1 related to the duration of the first phase. Therefore, given
X1 and Φi,1, it is reasonable to assume that the duration X2 of the second phase is
only dependent on X1. Similarly, given X1, X2, andΦi,1, the duration X3 of the third
phase is only dependent on X1 and X2, and so on.

Remark 13.2 Through the above assumptions, we can observe that, to solve the
concerned problem, the PMS should have the following characteristics. First, there
are two types of the CM information obtained from the observation process: the
observed degradation data and the CM information related to the phase durations.
The degradation data can reflect the health state of the PMS and are used to model the
degradation process of the PMS for estimating its lifetime while the CM information
is related to the duration of the phase and thus is used to estimate the probability
distributions of durations of the mission phases. As such, the history of all samples
collected to date can be used to calculate the posterior probability distribution of the
system lifetime and the mission time. After obtaining the PDFs of the lifetime of the
mission system and the distribution of the mission completion time, we can estimate
the mission reliability at the current CM point.

13.3 Mission Process to Estimate the Mission Time

In this section, we consider a general multiphase mission process, as illustrated in
Fig. 13.1. To do so, we mainly formulate the model for the mission process in the
nth phase.

Considering that the exact duration of the phase is unknown in its operation, but
one thing we do know is that over a monitoring interval of time, the duration is just an
interval shorter at the end of the interval than at the beginning of the interval if nothing
happened during that interval. In the meantime, we may observe an increasing or
decreasing trend of themonitored CM informationϕi,n . Based on these observations,
the problem can be formulated as follows with a simple and intuitive form, at least in
principle. If we define Li,n as the remaining duration of the first phase at time ti with
the realization li,n , and the relationship between Li,n and Li+1,n can be described
as Li+1,n = Li,n − (ti+1 − ti ), i f Li,n > ti+1 − ti . Note that L0,n is actually the
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duration of the first phase. Furthermore, the duration of the mission time is always
positive and thus we use the transformation Zi,n = ln Li,n with the realization zi,n
to guarantee Li,n > 0. In order to estimate Li,n from ϕi,n , we need to model the
stochastic relationship between li,n and ϕi,n . To do so, we use a concept called a
floating scale parameter to model the relationship between zi,n and ϕi,n which is
modeled by a stochastic distribution to characterize their relation [26–28]. The basic
idea is to make the mean parameter of ϕi,nbe a function of zi,n , which enables an
updating mechanism of the mean parameter.

Together with the above description, the relationship among Li,n , Li+1,n , Zi,n ,
and ϕi,n can be described as follows according to [28]:

Li+1,n =
{
Li,n − (ti+1 − ti ) i f Li,n > ti+1 − ti
not defined otherwise

,

Zi,n = ln Li,n

ϕi,n = gn(zi,n) + ηi,n,

, (13.1)

where gn(zi,n) is a function to be determined, describing the relationship between
the mission process and the CM data relative to the duration of the phase, and ηi,n is
the measurement error normally distributed as ηi,n ∼ N (0,σ2

n).
Therefore, the key for estimating the remaining phase duration is to formulate

the relationship between li+1,n and the CM history Φi,n . By the classical stochastic
filtering theory, it can be shown that this relationship can be established recursively
as follows

p Li+1,n |Φi,n

(
li+1,n

∣∣Φi,n
) = p

(
ϕi,n

∣∣ li+1,n
)
p Li,n|Φi−1,n

(
li+1,n + ti+1 − ti

∣∣Φi−1,n
)

∫∞
0 p

(
ϕi,n

∣∣ li+1,n
)
p Li,n|Φi−1,n

(
li+1,n + ti+1 − ti

∣∣Φi−1,n
)
dli+1,n

.

(13.2)

It is noted that, in principle, any distribution with the positive support can be
used to model L0,n . However, in this case it is difficult to analytically evaluate (13.2)
due to its general filtering nature and thus numerical methods have to be used, e.g.,
particle filter. In order to solve and formulate above equation explicitly, we apply a
method using the Extended Kalman Filtering (EKF) technique based on the work in
[28], in which the EKF technique was used to estimate the residual life. It is noted
that using EKF instead of general particle filtering saves computational complex-
ity, but comes at a cost of losing some generality, since the EKF is based on the
Taylor expansion of functions of Gaussian random variables. Therefore, using the
general filtering technique such as particle filtering might be a good alternative for
complicated engineering applications, but this is not the focus of the current chapter.

As mentioned before, the duration of the mission time must be positive. As such,
we define Li,n as a log-normal random variable and thus Zi,n = ln Li,n as the
unknown state of the model (13.1) which is normally distributed. After obtain-
ing the CM information about ϕi,n at ti , we use the EKF methodology to esti-
mate/update the conditional PDF of Zi,n and further the remaining duration Li,n on
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the basis of the CM information to date, i.e., Φi,n . We denote the updated and one-
step predicted conditional PDF of Zi,n and Zi+1,nas Zi,n

∣∣Φi,n ∼ N (zi |i ,n, Pi |i ,n),
and Zi+1,n

∣∣Φi,n ∼ N (zi+1|i ,n, Pi+1|i ,n), respectively. In this chapter, zi |i ,n , Pi |i ,n ,
zi+1|i ,n , and Pi+1|i ,n can be obtained by the EKF. The main results are summarized
as the following proposition and its proof is placed in the supplementary material to
save the space.

Proposition 13.1 As for (13.1), the estimates of zi |i ,n, Pi |i ,n, zi+1|i ,n, and Pi+1|i ,n

can be obtained by the EKF as follows:

zi |i ,n = zi |i−1 ,n + Ki,n
[
ϕi,n − gn(zi |i−1 ,n)

]
, (13.3)

Ki,n = [
Pi |i −1,ng

′
n(zi |i−1 ,n)

] [
g′
n(zi |i−1 ,n)

2Pi |i −1,n + σ2
n

]−1
, (13.4)

Pi |i ,n = Pi |i −1,n
(
1 − Ki,ng

′
n(zi |i−1 ,n)

)
. (13.5)

zi |i −1,n = ln
[
ezi−1|i −1,n+0.5Pi−1|i −1,n − (ti − ti−1)

]−
0.5 ln

(
1 +

(
ePi−1|i−1 ,n −1

)
e2zi−1|i −1,n+Pi−1|i −1,n

[
ezi−1|i −1,n+0.5Pi−1|i −1,n −(ti−ti−1)

]2
)

, (13.6)

and
Pi |i−1 ,n = Pi−1|i −1,n . (13.7)

where Ki,n is the Kalman gain, and

g′
n(zi |i−1 ,n) = dgn(zi,n)/dzi,n

∣∣
zi,n=zi |i−1 ,n

.

Proof Specifically, according to the principle of the EKF, the updating equation of
the expectation of Zi,n can be formulated as

zi |i ,n = zi |i−1 ,n + Ki,n
[
ϕi,n − gn(zi |i−1 ,n)

]
,

where Ki,n is the Kalman gain function:

Ki,n = [
Pi |i −1,ng

′
n(zi |i−1 ,n)

] [
g′
n(zi |i−1 ,n)

2Pi |i −1,n + σ2
n

]−1
,

where g′
n(zi |i−1 ,n) = dgn(zi,n)/dzi,n

∣∣
zi,n=zi |i−1 ,n

.
Correspondingly, the updating equation for the estimation variance can be formu-

lated as
Pi |i ,n = Pi |i −1,n

(
1 − Ki,ng

′
n(zi |i−1 ,n)

)
.

When applying above EKF methodology, we need to initiate the algorithm at
the start of the mission phase using z0|0 ,n and P0|0,n , which can be estimated
from historical data. In addition, in the above updating equations, it is required to
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calculate the one-step estimation for the expectation zi |i−1 ,n and variance Pi |i −1,n .
In the following, we try to obtain these quantities.

Considering that Zi,n

∣∣Φi,n ∼ N (zi |i ,n, Pi |i ,n) and Zi,n = ln Li,n , we get

E
[
Li,n

∣∣Φi,n
] = ezi |i ,n+0.5Pi |i ,n , (13.8)

and

var
[
Li,n

∣∣Φi,n
] = (

ePi |i ,n − 1
)
e2zi |i ,n+Pi |i ,n . (13.9)

Thus, we further have Li,n

∣∣Φi,n ∼ log N (zi |i ,n, Pi |i ,n). Then, based on the first
equation in Eq. (13.1), a one-step forecasting of the remainingmission phase duration
from ti to ti+1 is

E
[
Li+1,n

∣∣Φi,n
] =

{
E
[
Li,n

∣∣Φi,n
]− (ti+1 − ti ), i f E

[
Li,n

∣∣Φi,n
]

> ti+1 − ti
0, otherwise

.

Since the change in the established state equation is deterministic over (ti , ti+1),
the variance about the mean estimate is given by

var
[
Li+1,n

∣∣Φi,n
] = var

[
Li,n

∣∣Φi,n
]
.

By reversing the relationships given in Eqs. (13.8) and (13.9), E
[
Li+1,n

∣∣Φi,n
]

can be transformed into zi+1|i ,n for the next CM time as

zi+1|i ,n = ln
[
E
(
Li+1,n

∣∣Φi,n
)]− 0.5 ln

(
1 + var( Li+1,n|Φi,n)

E( Li+1,n|Φi,n)
2

)

= ln
[
ezi |i ,n+0.5Pi |i ,n − (ti+1 − ti )

]− 0.5 ln

(
1 +

(
ePi |i ,n −1

)
e2zi |i ,n+Pi |i ,n

[
ezi |i ,n+0.5Pi |i ,n −(ti+1−ti )

]2
)

,

Without any random variation in the prediction of the state, we have

Pi+1|i ,n = Pi |i ,n.

Then, the expectation zi |i−1 ,n and variance Pi |i ,n can be straightforwardly com-
puted as follows

zi |i ,n = ln
[
ezi−1|i ,n+0.5Pi−1|i ,n − (ti − ti−1)

]
−0.5 ln

(
1 +

(
ePi−1|i−1 ,n − 1

)
e2zi−1|i ,n+Pi−1|i ,n[

ezi−1|i −1,n+0.5Pi−1|i ,n − (ti − ti−1)
]2
)

,

and
Pi |i−1 ,n = Pi−1|i ,n.

This completes the proof.
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From the above proposition, upon obtaining the CM information ϕi,n at ti , the
estimated PDF of the remaining duration of the nth phase, p Li,n|Φi,n

(
li,n
∣∣Φi,n

)
, can

be formulated as

p Li,n|Φi,n

(
li,n
∣∣Φi,n

) = 1

li,n
√
2πPi |i ,n

e−(2Pi |i ,n)
−1

(ln li,n−zi |i ,n)
2

. (13.10)

From the relationship between the duration of the current phase and its remaining
duration, we have

Xn| Φi,n = Li,n + ti −
n−1∑
j=1

x j . (13.11)

Then, we directly estimate the distribution of Xn at time ti for the phased-mission
system by:

p Xn |Φi,n

(
xn| Φi,n

) = p Li,n|Φi,n

⎛
⎝ xn +

n−1∑
j=1

x j − ti

∣∣∣∣∣∣Φi,n

⎞
⎠ , (13.12)

where p Li,n|Φi,n

(
xn +∑n−1

j=1 x j − ti
∣∣∣Φi,n

)
can be calculated by (13.10).

Therefore, the duration of the next phase conditional on the data up to ti and Xn

can be computed according to

p Xn+1|Φi,n

(
xn+1| Φi,n

) = ∫
p Xn ,Xn+1|Φi,n

(
xn, xn+1| Φi,n

)
dxn

= ∫
p Xn+1|Xn ,Φi,n

(
xn+1| xn, Φi,n

)
p Xn |Φi,n

(
xn| Φi,n

)
dxn

= ∫
p Xn+1|Xn ( xn+1| xn) p Xn |Φi,n

(
xn| Φi,n

)
dxn

= ∫
p Xn+1|Xn ( xn+1| xn) p Li,n|Φi,n

(
xn +∑n−1

j=1 x j − ti
∣∣∣Φi,n

)
dxn

(13.13)

Similarly, the duration of the remaining phases, conditional on the data up to ti ,
can be obtained by

p Xs |Φi,n

(
xs | Φi,n

)
=
∫

p Xn ,Xn+1,...,Xs |Φi,n

(
xn, xn+1, . . . , xs | Φi,n

)
dxndxn+1 · · · dxs−1, s = n + 1, . . . , N .

(13.14)

According to the Assumption 9, we have

p Xn ,Xn+1,...,Xs |Φi,n

(
xn, xn+1, . . . , xs | Φi,n

)
= p Xn |Φi,n ( xn | Φi,n)p Xn+1|Xn ( xn+1| xn) · · · p Xs |Xn ,Xn+1,...Xs−1 ( xs | xn, xn+1, . . . , xs−1)

.

(13.15)
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Based on the above results, the distribution of the mission time TM conditional

on the related CM information Φi,n , denoted by TM | Φi,n =
(∑N

k=1 Xk

)∣∣∣Φi,n , can

be calculated by (13.16). Then by differentiating Pr
(
TM ≤ tm | Φi,n

)
regarding to tm ,

we have the PDF of the mission time conditional on Φi,n at ti as (13.17).

Pr
(
TM ≤ tm | Φi,n

) = Pr

(
n−1∑
j=1

x j +
N∑

k=n
Xk ≤ tm

∣∣∣∣∣Φi,n

)
= Pr

(
N∑

k=n
Xk ≤ tm −

n−1∑
j=1

x j

∣∣∣∣∣Φi,n

)

= Pr

(
0 < Xn ≤ tm −

n−1∑
j=1

x j , 0 < Xn+1 ≤ tm −
n−1∑
j=1

x j − Xn, . . . , 0 < XN ≤ tm

−
n−1∑
j=1

x j −
N−1∑
k=n

Xk

∣∣∣∣∣Φi,n

)

= ∫ tm−
n−1∑
j=1

x j

0

∫ tm−
n−1∑
j=1

x j−xn

0 · · · ∫
tm−

n−1∑
j=1

x j−
N−1∑
k=n

xk

0 pXn ,Xn+1,...,XN

∣∣∣∣∣∣∣
Φi,n

× (
xn, xn+1, . . . , xN | Φi,n

)
dxndxn+1 · · · dxN

= ∫ tm−
n−1∑
j=1

x j

0 p Xn |Φi,n ( xn | Φi,n)
∫ tm−

n−1∑
j=1

x j−xn

0 p Xn+1|Xn ( xn+1| xn) · · ·Pr XN |Xn ,Xn+1,...XN−1

×
(
tm −

n−1∑
j=1

x j −
N−1∑
k=n

xk

∣∣∣∣∣ xn, xn+1, . . . , xN−1

)
dxndxn+1 · · · dxN−1

.

(13.16)

p TM |Φi,n ( tm | Φi,n)

=
∫ tm−

n−1∑
j=1

x j

0
p Xn |Φi,n ( xn | Φi,n)

∫ tm−
n−1∑
j=1

x j−xn

0
p Xn+1|Xn ( xn+1| xn) · · · p XN |Xn ,Xn+1,...XN−1

×
⎛
⎝ tm −

n−1∑
j=1

x j −
N−1∑
k=n

xk

∣∣∣∣∣∣ xn, xn+1, . . . , xN−1

⎞
⎠ dxndxn+1 · · · dxN−1. (13.17)

From the above formulation, we can obtain the estimated mission time from the
observed CM data. This will make the estimation of the mission reliability feasible.
So far, we have completed the task of formulating the mission time distribution
conditional on the related CM information. In the next section, we will focus on how
to estimate the lifetime or the remaining useful life of the PMS from the observed
degradation data.
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13.4 System Degradation Process to Estimate the Lifetime

13.4.1 Model Description

Herewe use aWiener process tomodel the degradation process of themission system
over time, and to estimate the RUL of PMSs. It is noted that this model has been
widely used to characterize the evolving path of the degradation process [29–39].

For t ≥ 0, we let Y (t) denote the degradation variable at time t . Without loss of
generality, assume the starting reading y(0) for the degradation process {Y (t) , t ≥ 0}
to be fixed. From the model formulation of the mission, we know that at each time
t , the PMS can only occupy one of the phases in a phase set Ψ = {1, 2, . . . , N }.
Let ν : [0,∞) → Ψ be a deterministic and piecewise constant function so that ν(t)
represents the mission phase at time t . Under this setting, the mission phases are
sequential but the duration of each phase is random. Further, we define a degradation
rate function λ : Ψ → �+ so that λ (ν(t)) represents the degradation rate of the
PMS at t . For example, if the PMS is at the nth phase at t , then ν(t) = n and λ (n)

is the degradation rate of the nth phase. It is noted that the rate of degradation is
dependent on the mission phase. For notation convenience, we simplify λ (n) as λn

throughout the remaining parts.
Under the above descriptions, the evolution of the monitored degradation variable

Y (t) over time can be described using a Wiener process based degradation model
with piecewise constant degradation rate as follows,

Y (t) = y(0) +
∫ t

0
λ (ν(u))du + σB(t). (13.18)

where {B(t), t ≥ 0} is a standard Brownian motion (BM) process and σ(σ > 0) is
the diffusion parameter, with σB(t) ∼ N (0,σ2t) for t > 0. This term characterizes
degradation effects that cannot be attributed to the mission process.

Remark 13.3 As for the model (13.18), the difference made here from the other
models in the literature is that the degradation process is dependent on the mission
phase and thus is modeled as a multistage manner by λ (ν(t)) It is noted that the
model (13.18) is similar to the model with multiple change points such as [38]
since the degradation rates of the PMS is dependent on the mission phases, and the
degradation rate changes when the mission phase changes. The major difference of
these two kinds of models is that a change-point detection procedure is needed in
the model with multiple change points while the exact ending time of the mission
phase is known once the phase is completed and thus there is no need to detect the
change point for the proposed model. At the same time, during the process of the
operating phase, we can estimate the phase duration by the CM data and the method
has been given in Sect. 13.3. In contrast, estimating the time of the change point is
not considered in the model with multiple change points.



13.4 System Degradation Process to Estimate the Lifetime 375

Remark 13.4 In the model (13.18), it is assumed that the degradation process in all
phases is linked to the same degradation characteristic. Actually, the health states of
many systems can be reflected by one key characteristic such as capacity of battery
systems and the vibration amplitude of mechanical systems. As a result, the main
focus is placed on modeling the single degradation characteristic in degradation
modeling field [31–34]. In this chapter, we also follow this line by considering the
effect of themission process on the degradation rate. On the other hand, for a complex
system, theremay bemore than one degradation characteristics. In this case, it usually
constructs a composite health indexvia fusion ofmultiple degradation characteristics.
Then, the fused health index can be modeled by the method for one degradation
characteristics (e.g., [40]). It can be observed that once the composite health index
via fusion of multiple degradation characteristics is available, the presented model
can also applied.

Remark 13.5 Considering that phased-mission systems are multistage systems in
essence, we use λ (ν(t)) to model such multistage manner in (13.18). However, it is
noted that (13.18) is a data-drivenmodel in stochastic framework tofit the degradation
data of the monitored health state of the system, rather than the physics-based model.
In general, {Y (t) , t ≥ 0} is a nonstationary process tomodel the degradation process
with an increasing or decreasing trend.

In the above degradation modeling framework, the lifetime of PMS is defined
as the first passage time (FPT) that the degradation process {Y (t), t ≥ 0} hits a
fixed failure threshold w [37]. Such failure threshold can be determined by either
engineering domain knowledge or accepted industrial standards. For example, the
ISO 2372 and ISO 10816 are frequently adopted for defining acceptable vibration
threshold levels. Based on this threshold, the RUL modeling principle is presented
as follows. When degradation Y (t) modeled by (13.18) reaches the threshold w, the
PMS can be declared to be failed and thus there is no useful lifetime left. This FPT
requirement may be considered to be restrictive to some cases since the degradation
may go back after the first hit. However, for critical equipment, it is usuallymandatory
for putting this into practice and once the observed degradation is equal or above the
set threshold level, the system must be stopped for inspecting.

The main objective here is to estimate and update the RUL distribution of PMS
based on the discrete observations of the degradation process and the mission
process over time. Suppose the degradation process is discretely monitored at time
0 = t0 < t1 < · · · < ti and let yk = y(tk) denote the degradation observation at time
tk , k = 0, 1, . . . , i . The set of the degradation observations up to ti is represented by
Yi = {y0, y1, y2, . . . , yi }. In addition, we can actually observe the transition times of
the mission phases up to ti . Therefore, we observe the set of the mission transition
times Ci = {

u j : j = 1, 2, . . . , n(ti )
}
, where u j is the j th mission phase transi-

tion time and n(ti ) is the cumulative number of mission transitions up to ti . Since
the degradation path and the RUL estimation is dependent on the future mission
transitions, we denote the future mission phase transitions from current time ti to
a fixed future time t by Fi (t) = {

u j : u j ∈ (ti , t]
}
. Under these settings, we know

that the mission process will maintain the phase ν(u j−1) over the interval [u j−1, u j ),



376 13 Reliability Estimation Approach for PMS

j = 1, 2 . . . , n(ti ), u0 = 0. Based on the above discussions, using the concept of the
FPT, the lifetime of PMS can be defined as

Td = inf {t > 0 : Y (t) ≥ w} . (13.19)

As a result, we define the RUL Si of PMS at time ti as

Si = inf {si > 0 : Y (si + ti ) ≥ w} . (13.20)

with conditional cumulative distribution function (CDF)

Pr(Si ≤ si |Yi ,Ci ) = Pr

(
sup
si>0

Y (ti + si ) ≥ w

∣∣∣∣ Yi ,Ci , Φi,n

)
, (13.21)

where
(
Yi ,Ci , Φi,n

)
is the information available up to ti .

13.4.2 Bayesian Updating of Model Parameters

On the basis of the information
(
Yi ,Ci , Φi,n

)
available up to ti , we develop aBayesian

approach for updating the parameters of the degradation model using prior informa-
tion estimated from historical data and real-time degradation observations obtained
from a fielded PMS. In many applications, historical databases of the degradation
data and mission phase transition times are available for estimating the prior infor-
mation. However, even systems originating from the same source can exhibit widely
varying reliability characteristics due to the heterogeneity in materials, operation
environments, etc. By combining both historical and real-time data, we are able to
account for these inherent differences.

The updating of the degradation model, according to its formulation in (13.18),
requires updating parameters associated with the degradation model parameters λ
and σ, as well as the parameters relevant to the mission process, denoted by γ. For
notational brevity, we denote the parameter vector as θ = (λ,σ, γ). Denote the
prior distribution of θ by π(θ) = π(λ,σ, γ). Regarding how to determine the prior
distribution, similarmethod can be used based on the historical databases by referring
to [38]. After obtaining the monitoring information

(
Yi , Fi , Φi,n

)
available up to ti ,

to achieve model updating under Bayesian framework, it is equivalent to compute
the posterior distribution of the model parameters as follows:

fθ(θ|Yi ,Ci , Φi,n) = fθ(λ,σ, γ| Yi ,Ci , Φi,n)

= π(λ,σ,γ) fC (Ci ,Φi,n|λ,σ,γ) fY ( Yi |Ci ,Φi,n ,λ,σ,γ)∫
θ fC,Y ( Yi ,Ci ,Φi,n|λ,σ,γ)dθ

∝ π(λ,σ, γ) fC(Ci , Φi,n

∣∣λ,σ, γ) fY (Yi |Ci , Φi,n,λ,σ, γ)

, (13.22)
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where fC(Ci , Φi,n

∣∣λ,σ, γ) fY (Yi |Ci , Φi,n,λ,σ, γ) is the likelihood function asso-
ciated with the degradation process and the mission process.

13.4.3 Estimating the RUL of PMS

In the following, we formulate the RUL estimation of the PMS based on the infor-
mation

(
Yi ,Ci , Φi,n

)
available up to ti . This problem can be solved by computing

the boundary crossing probability of a standard BM process. We elaborate this com-
puting process in the following.

We first reformulate the degradation process into two parts: deterministic and
stochastic terms as

Y (t) = η(t) + σB(t), (13.23)

where η(t) = y(0)+∫ t
0 λ (ν(u))du is the deterministic part and σB(t) is the stochas-

tic part. From the formulation of degradation process inSect. 13.4.1,we learn thatη(t)
is a piecewise linear function whose line segments are defined by the mission phase
transition {un}. Namely, if the mission process is in the nth phase during [un−1, un),
then the degradation rate over this interval is λn and

∫ t
un−1

λ (ν(u))du = λn(t −un−1)

for t ∈ [un−1, un). After the transition to the n+1th phase at un , the new degradation
rate becomes λn+1, and so on.

According to the above model formulation, the probability that the degradation
is below the threshold w at time t is

Pr
(
Y (t) ≤ w|Y0,C0, θ, F0(t),Φ0,0

) = Pr
(
σB(t) < w − η(t)| Y0,C0, θ, F0(t),Φ0,0

)
= Pr

(
B(t) <

w−η(t)
σ

∣∣∣ Y0,C0, θ, F0(t),Φ0,0

)
,

(13.24)

where θ is the parameter vector associated with the degradation process and the
mission process, which will be estimated from the available data.

To further simplify notation, let b(t) = w−η(t)
σ

. Thus, estimating the lifetime can
be achieved by deriving the probability that {B(t), t ≥ 0} crosses the boundary b(t).
The method of this derivation is based on the idea that the event that {B(t), t ≥ 0}
does not cross b(t) over the interval [0,U ] (where U = uN−1) can be split into n
conditional events that {B(t), t ≥ 0} does not cross b(t) over the interval [u j , u j+1)

given that {B(t), t ≥ 0} does not cross b(t) over the interval [u j−1, u j ), where u j is
the transition time from the j th phase to the j+1th phase. For notation simplicity, let
b j = b(u j ) = w−η(u j )

σ
, j = 0, 1, . . . , N−1, and let n(U ) = N−1denote the number

of phase transitions on the interval [0,U ]. Then, we have [0,U ] = ⋃N−1
j=1 [u j−1, u j ).

Based on these settings, we have the following theorem to derive the FPT associated
with the degradation process {Y (t), t ≥ 0}.
Theorem 13.1 Let 0 = u0 < u1 < · · · < uN−1 = U denote N − 1 transition times
of the mission phase and b = (b1, b2, . . . , bN−1)

′. The probability distribution of the
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FPT associated with {Y (t), t ≥ 0} is given as

Pr(T ≤ t |Y0,C0, θ, F0(t),Φ0,0)

= 1 − E
[
g (B(u1), B(u2), . . . , B(uN−1); b)| Y0,C0, θ, F0(t),Φ0,0

] , (13.25)

where the function g (·) can be formulated as

g (z1, z2, . . . , zN−1; b)
= ∏N−1

j=1 I (z j < d j )
(
1 − exp

[
− 2(d j−1−z j−1)(d j−z j )

u j−u j−1

])
, (13.26)

and I (·) is the indicator function.
Proof For a single linear boundary on the interval [0,U ] of the form b(u) = c+au,
Siegmund in [41] proved that the (conditional) probability that a standardBMprocess
does not cross the boundary in this interval is given by

Pr (B(u) ≤ c + au, u < U |B(U ) = z) = 1 − exp

(
−2c(aU + c − z)

U

)
.

Considering the degradation model (13.16), we have

Pr (B(u) ≤ b(u), u < U )

=
∫ b1

−∞
Pr ( B(u) ≤ b(u), u < u1| B(u1) = z1)Pr ( B(u) ≤ b(u), u1 < u ≤ U | B(u1) = z1) d Pr

u1
(z1),

(13.27)

where

d Pr
u
(z) = 1√

2πu
exp

(
− z2

2u

)
dz,

and d Pru(z) is the PDF of B(u).
By the result of [41], we know that the first term in the integral part of Eq. (13.27)

is

Pr ( B(u) ≤ b(u), u < u1| B(u1) = z1) = 1 − exp

(
−2b0(b1 − z1)

u1

)
.

It is further noted that, given B(u1) = z1, the process {B(u + u1) − z1} is still a
BM start from 0 and thus the second factor in the integral (B2) can be formulated as

Pr ( B(u) ≤ b(u), u1 < u ≤ U | B(u1) = z1) = Pr (B(u) ≤ b(u + u1) − z1, u ≤ U − u1)

= ∫ b2−z1
−∞

(
1 − exp

(
− 2(b1−z1)(b2−z1−z2)

u2−u1

))
Pr ( B(u) ≤ b(u + u1) − z1, u2 − u1 < u ≤ U − u1| B(u2 − u1) = z2) d Pru2−u1 (z2 − z1)

= ∫ b2
−∞

(
1 − exp

(
− 2(b1−z1)(b2−z2)

u2−u1

))
Pr (B(u) ≤ b(u + u2) − z2, u ≤ U − u2) d Pru2−u1 (z2 − z1)

(13.28)
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Applying the similar procedure, we can obtain

Pr (B(u) ≤ b(u + un−1) − zn−1, u ≤ un − un−1)

= ∫ bn
−∞

(
1 − exp

(
− 2(bn−1−zn−1)(bn−zn)

un−un−1

))
Pr (B(u) ≤ b(u + un) − zn, u ≤ U − un) d Prun−un−1(zn − zn−1)

, (13.29)

where by the definition of {B(u), u ≥ 0},

d Pr
un−un−1

(zn − zn−1) = 1√
2π(un − un−1)

exp

(
− (zn − zn−1)

2

2(un − un−1)

)
dzn, n = 1, . . . , N − 1.

Based on the result in Eq. (13.29), we finally have

Pr (B(u) ≤ b(u), u < U ) =
∫

(−∞,b)

∏N−1

j=1

(
1 − exp

[
−2(d j−1 − z j−1)(d j − z j )

u j − u j−1

])
f (z)dz,

where the integral region is (−∞, b) = (−∞, b1)× (−∞, b2)×· · ·× (−∞, bN−1)

and f (z) is the PDF of z = (z1, z2, . . . , zN−1)
′. By the independent increments

property of BM, we have

f (z) =
∏N−1

j=1

1√
2π(u j − u j−1)

exp

(
− (z j − z j−1)

2

2(u j − u j−1)

)
.

This completes the proof.

In the following,we focus on estimating theRULof PMSat the currentmonitoring
time ti (ti < U ). Suppose the degradation observations have been obtained at times
0, t1, . . . , ti and let {ν(t) : ti ≤ t ≤ U } denote the future mission profile from the
current time ti to the time U . Now the probability distribution of the RUL Si at time
ti given that the degradation process has not crossed the threshold w up to ti , can be
obtained by the crossing probability of {Y (t), t ≥ 0} to the thresholdw. Specifically,
we have the following theorem regarding the probability distribution of the RUL Si
at time ti .

Theorem 13.2 Let bi (t) = 1
σ
(w − yi − ∫ t

ti
λ (ν(u))du) for t ∈ (ti ,U ] and Ai (t) ={

j : u j ∈ [ti , t]
}
. The conditional probability distribution of the RUL Si at time ti is

Pr(Si ≤ si |Yi ,Ci , Φi,n, θ, Fi (ti + si ))

= 1 − E

[∏
j∈Ai (ti+si )

[
I (Wi (u j ) < bi (u j ))×(
1 − exp

[
− 2Zi, j

u j−u j−1

])]
∣∣∣∣∣ Yi ,Ci , Φi,n,θ,Fi (ti+si )

] ,
(13.30)

where I (·) is the indicator function and Wi (u j ) = B(u j ) − B(ti ), Zi, j = (
bi (u j−1)

−Wi (u j−1)
) (
bi (u j ) − Wi (u j )

)
.
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Proof Conditionally on the degradation observations up to time ti , the degradation
process can be formulated for each t ∈ (ti ,U ] as

Y (t) = yi +
∫ t

ti

λ (ν(u))du + σ (B(t) − B(ti )) .

Then, by utilizing the notation of the RUL realization, si , the degradation process
can be revised for each t ∈ (ti ,U ] as

Y (ti + si ) = yi +
∫ ti+si

ti

λ (ν(u))du + σ (B(ti + si ) − B(ti )) .

It can be easily verified that {B(ti+si ) − B(ti ), si ≥ 0} is still a standard BM over
time si . Therefore, the RUL at time ti corresponds to the FPT of {B(ti+si ) − B(ti ),
si ≥ 0} crossing the boundary bi (t) = bi (ti + si ). Applying Theorem 13.2, we can
directly complete the proof.

This completes the proof.

It is noted that, to evaluate the expectation operator in (13.30), we need the
PDF of Wi (u j ), j ∈ Ai (t) = {

j : u j ∈ [ti , ti + si ]
}
. For example, we suppose

Ai (ti + si ]) = {l, l + 1, . . . , l + m}, and then by the stationary and independent
increments properties of the standard BM, the PDF ofWi (u j ), j = l, l+1, . . . , l+m
can be formulated as

f
(
Wi (u j ) = w j , j ∈ Ai (ti + si )

) = 1√
2π(ul−ti )

exp
[
− z2l

2(ul−ti )

]
×∏l+m

j=l+1
1√

2π(u j−u j−1)
exp

[
− (w j−w j−1)

2

2(u j−u j−1)

] .

Based on the result in Theorem 13.2 and the posterior distribution of the parameters,
the RUL distribution at time ti can be formulated by the law of total probability as

Pr(Si ≤ si |Yi ,Ci , Φi,n)

= ∫
θ,u j∈Fi (ti+si )

[
Pr(Si ≤ si |Yi ,Ci , Φi,n, θ, Fi (ti + si ))·
fFi (Fi (ti + si )|Yi ,Ci , Φi,n, θ) fθ(θ|Yi ,Ci , Φi,n)

]
dθdu j

,

(13.31)
where fFi (Fi (ti + si )|Yi ,Ci , Φi,n, θ) is the joint PDF of the remaining mission phase
transition times from time ti to ti + si . This quantity can be evaluated by the joint
PDF of the remaining current mission phase duration and subsequent mission phase
durations. For example, if the current mission phase process occupies the nth phase,
then the PDF of the remaining duration of the current phase is p Li,n|Φi,n

(
li,n
∣∣Φi,n

)
as formulated in (13.10). Then the joint PDF of the remaining current mission
phase duration Li,n , and subsequent mission phase durations Xn+1, . . . , XN−1 can
be obtained by
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fFi (Fi (ti + si )|Yi ,Ci , Φi,n, θ)
= p Li,n ,Xn+1,...,XN−1|Φi,n

(
li,n, xn+1, . . . , xN−1

∣∣Φi,n
)

= p Li,n|Φi,n

(
li,n
∣∣Φi,n

) · p Xn+1|Xn

(
xn+1| ti + li,n −

n−1∑
l=1

xl

)
· · ·

·p XN−1|Xn ,Xn+1,...Xs−1

(
xN−1| ti + li,n −

n−1∑
l=1

xl , xn+1, . . . , xs−1

) . (13.32)

Denote the future mission phase transition times by un, un+1, . . . , uN−1. Con-
sidering the fact that un = ti + Li,n , un+1 = ti + Li,n + Xn+1, . . . uN−1 =
ti +Li,n +∑N−1

k=n+1 Xk , the joint PDF of un, un+1, . . . , uN−1 can be achieved straight-
forwardly by the PDF of Li,n and Xn+1, . . . , XN−1 via the variable transformation
technique.

From (13.31), we can also observe the dependency of the estimated lifetime
of the system on the degradation observations and the mission progression history
up to ti . Unfortunately, despite the simple and straightforward formulations, it is not
easy to directly and analytically compute the right-hand side of (13.31) because the
computation involves multidimensional integration. As such, we need a simulation
method to tackle this problem. In this chapter, we employ a Monte Carlo simulation
algorithm to estimate the right-hand side of (13.31) at time ti .

Algorithm 13.1 (Monte Carlo algorithm for mission reliability estimation)
Step 1: Select a sufficiently large number (denoted by M1) to simulate the real-

izations of θ from fθ(θ|Yi ,Ci , Φi,n). These realizations of θ are expressed by
θr , r = 1, . . . , M1.

Step2: Select the number of the futuremission process profiles for each realization
θr of θ, Kr , r = 1, . . . , M1.

Step 3: For each θr , given the current mission state ν(ti ) = n, simulate
the mission process paths on the interval [ti ,U ], {νm(u) : ti < u ≤ U } for m =
1, 2, . . . , Kr and obtain the sets of the future mission transition times Fi (ti + si ) ={
un+1,m, . . . , uN−1,m

}
and Ai (ti + si ) = {n + 1, . . . , N − 1}.

Step 4: Calculate bmi (u j,m) = 1
σ

(
w − yi − ∫ u j,m

ti
λ (ν(u))du

)
for each sampling

path, m = 1, 2, . . . , Kr , j = n + 1, . . . , N − 1.
Step 5: Calculate the RUL distribution for each sampling path, Prm,r (Si ≤

si |Yi ,Ci , Φi,n, θr , Fi (ti + si )) via Theorem 2, m = 1, 2, . . . , Kr . Specifically, we
compute Prm,r (Si ≤ si |Yi ,Ci , Φi,n, θr , Fi (ti + si )) by the following steps:

(1) Select a sufficiently large number (e.g., M2) of realizations for N − n − 1-
dimensional BM process {B(u j,m) − B(ti ), j = n + 1, . . . , N − 1}.

(2) For each l = 1, 2, . . . , M2, generate the lth realization zlj of B(u j,m) −
B(ti ), j = n + 1, . . . , N − 1. This can be achieved by the simulation technique
of a standard BM based on the independent increments property of BM.

(3) By the law of large numbers, for sufficiently large M2, the conditional RUL
distribution can be estimated by
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Prm,r (Si ≤ si |Yi ,Ci , Φi,n, θr , Fi (ti + si )) = 1 − 1
M2

∑M2
l=1 gi,l,m,r

gi,l,m,r

= ∏
j∈Ai (ti+si )

⎡
⎣ I (zlj < bmi (u j,m))×(

1 − exp

[
− 2

(
bi (u j−1)−zlj−1

)(
bi (u j )−zlj

)
u j,m−u j−1,m

])
⎤
⎦ . (13.33)

Step 6: By the law of large numbers, for sufficiently large M1 and Kr , the RUL
distribution can be estimated by

Pr(Si ≤ si |Yi ,Ci , Φi,n)

= 1
M1

∑M1
r=1

(
1
Kr

∑Kr
m=1 Prm,r (Si ≤ si |Yi ,Ci , Φi,n, θr , Fi (ti + si ))

)
. (13.34)

13.5 Reliability Estimation for PMS

After obtaining the estimated lifetime fTd |Yi ,Ci (t |Yi ,Ci ) of the mission system from
the observed degradation data and the mission time p TM |Φi,n ( tm | Φi,n) from the CM
information related with the duration of the mission phase to date, we can estimate
the reliability of the mission process according to two definitions of the mission
reliability given in Sect. 13.2.1.

Then, according to two different definitions, the reliability of PMS at ti under the
nth phase can be respectively formulated as

Pr( Td ≥ TM | Yi ,Ci , Φi,n) = ∫
tm>0 p TM |Φi,n ( tm | Φi,n)

(∫
t≥tm

f Td |Yi ,Ci ,Φi,n ( t |Yi ,Ci , Φi,n)dt
)
dtm

= ∫
tm>0 p TM |Φi,n ( tm | Φi,n) Pr(Si ≤ tm − ti |Yi ,Ci , Φi,n)dtm

,

(13.35)
and

Pr(TM ≤ R| Td ≥ TM ,Yi ,Ci , Φi,n)

= Pr( TM≤R,Td≥TM |Yi ,Ci ,Φi,n)

Pr( Td≥TM |Yi ,Ci ,Φi,n)

=
∫∫

t≥tm ,0<tm≤R p Tm ,Td |Yi ,Ci ,Φi,n
( tm ,t |Yi ,Ci ,Φi,n)dtdtm

Pr( Td≥TM |Yi ,Ci ,Φi,n)

=
∫
0<tm≤R Pr(Si≤tm−ti |Yi ,Ci ,Φi,n)p TM |Φi,n

( tm |Φi,n)dtm
Pr( Td≥TM |Yi ,Ci ,Φi,n)

, (13.36)

where fTd |Yi ,Ci ,Φi,n (t |Yi ,Ci , Φi,n) = d Pr(Si ≤ t − ti |Yi ,Ci , Φi,n)/dt and p TM |Φi,n

( tm | Φi,n) have been modeled in Sects. 13.3 and 13.4.
To achieve the reliability estimation, (13.35) and (13.36) canbe similarly evaluated

by the simulation-based technique as the presented algorithm for computation of the
RUL distribution.

From (13.35) and (13.36), we observe that the presented approach for mission
reliability estimation establishes a linkage among themission reliability, the historical
data, and real-time information of the individual PMS.As such, themission reliability
can be obtained straightforwardly through the estimated distribution of the mission
time from the CM information related with the mission phase in conjunction with
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the estimated lifetime distribution from the degradation data in a real-time way. Note
that there are some unknown parameters in the PDFs fTd |Yi ,Ci ,Φi,n (t |Yi ,Ci , Φi,n) and
p TM |Φi,n ( tm | Φi,n). These parameters can be estimated based on the historical data by
the maximum likelihood approach naturally and thus we do not specifically discuss
this estimation issue to limit our scope.

13.6 Experimental Studies

13.6.1 Numerical Simulations

In this section, a numerical example is used to illustrate the effectiveness of the
presented approach. Suppose that there is a multiphase mission process with three
phases. The phase durations are log-normally distributed but correlated, which are
estimated using the historical phase duration data. For an individual PMS conducting
a particular mission process, there are some sensors to monitor the CM information
related with the phase duration and the degradation data related with the lifetime of
the PMS. The CM information, once obtained, is used to update the phase duration
and the mission time, while the degradation data are used to estimate the lifetime
of the PMS. Specifically, we consider the following relationships among X1, X2,
and X3:

X1 ∼ log N (μx1,σ
2
x1), X2 |X1 ∼ log N (μx2 + ln x1 − μx1,σ

2
x2)

X3 |X1 , X2 ∼ log N (μx3 + ln x1 + ln x2 − μx1 − μx2,σ
2
x3)

where μx j ,σ
2
x j , j=1, 2, 3 are parameters of log-normal distributions. Actually, these

distributions are respectively corresponding to the distributions of L0,1, L0,2, L0,3,
in the filtering models.

In the presented approach, it is required to determine the functional form of the
CM information and the remaining phase duration, i.e., gn(zi,n), n = 1, 2, 3. In the
simulation, we use the following functional forms of gn(zi,n),

ϕi,n = gn(zi,n) + ηi,n, (13.37)

with gn(zi,n) = an + bn exp(−zi,n) and ηi,n ∼ N (0,σ2
n), n = 1, 2, 3.

Actually, the selection of a suitable function of gn(zi,n) is essential when apply-
ing the EKF for a particular application and the above is just an idea to model the
relationship between zi,n and ϕi,n . Of course any other forms for (13.37) can be
used but the appropriate forms are frequently case dependent and can be selected by
comparing the model fitting according to some criterion such as Akaike information
criterion. For example, in [26, 28], the exponential form was adopted by the motiva-
tion of the vibration-basedmonitoring data and AICwas used for the mode selection.
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Table 13.1 Parameters used for simulation study

1st phase μx1 = 3,σ2
x1 = 0.04 a1 = 5, b1 = 4,σ1 = 0.3

2nd phase μx2 = 2.5,σ2
x2 = 0.06 a2 = 2, b2 = 3,σ2 = 0.2

3rd phase μx3 = 2.2,σ2
x3 = 0.02 a3 = 3.5, b3 = 0.8,σ3 = 0.3

Degradation process λ1 = 0.5,λ2 = 0.2,λ3 = 0.3,σ = 0.4

Therefore, similar approach can be used to select gn(zi,n), but it is not the focus of
this chapter and instead we just use (13.37) for illustrative purpose.

In order to generate the degradation data to estimate the lifetime of the PMS, we
use the following discrete equation

yi+1 = yi +
∫ ti+1

ti

λ (ν(u))du + σ (B(ti+1) − B(ti )) (13.38)

where B(ti+1−ti ) ∼ N (0, ti+1−ti ) andλ (ν(t)) = λn−1 if
∑n−1

k=0 Xk ≤ t <
∑n

k=0 Xk

with X0 = 0 and n = 1, 2, 3. Given the above settings and the parameters, we can
simulate the required data for our modeling and reliability estimation. Table13.1
shows the parameters used for the data simulation.

(a) the first phase (b) the second phase

(c) the third phase (d) the simulated degradation data

Fig. 13.2 The simulated CM information
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Figure13.2 shows the particular simulation data of the CM information related
with the phase duration and the degradation process under the above model settings
and parameters specifications.

Now we show the mission reliability results. When the mission process starts, we
need to calculate the PDF of the remaining phase duration such as (13.10), and then
update the PDF of the mission time (13.17) at each phase based on the CM data in
this phase.

Figure13.3 the estimated PDF of the remaining phase duration of each phase (a)
the first phase, (b) the second phase, and (c) the third phase; (d) the estimated PDF
of the RUL, at each sampling point.

Figure13.3 illustrates the estimated PDF of the remaining phase duration of each
phase and the estimated PDF of the RUL at each sampling point based on the
method developed in Sect. 13.5. In estimating the RUL,we set the failure threshold as
w = 25 and the numbers in the simulation algorithm are set as M1 = M2 = Kr =
2000 for calculate the RUL distribution. The obtained RUL distributions at different
sampling times are illustrated in Fig. 13.3d. It can be found from Fig. 13.3 that both
the developed filtering approach for remaining phase duration and RUL estimation
approach for the PMS degradation can effectively update the associated PDFs using
the CM information and degradation data to date. Based on these estimated phase

(a) the first phase (b) the second phase

(c) the third phase (d) the estimated PDF

of the RUL

Fig. 13.3 the estimated PDF of the remaining phase duration of each phase at each sampling point
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(a) (b)

Fig. 13.4 The mission reliability calculated by a (13.35), b (13.36)

durations and RUL for PMS, we evaluate the mission reliability. In order to show
the performance of the developed approach, we consider the following two cases:

• Case 1: The degradation quantity is subtle and thus the lifetime of mission system
is long enough.

Since the degradation is subtle, the estimated RUL of the PMS is expected to be
large. This is consistent with the intuition that for a newly installed PMS, its lifetime
is naturally large enough and may be designed to own the ability of performing many
missions. In order to simulate this case, we set a large failure threshold w = 25. The
reason to do so is that a large threshold corresponds to a long lifetime of the PMS.
First, we calculate the mission reliability at each sampling point according to the
definition that the mission can be successfully accomplished before the system fails.
The result is shown in Fig. 13.4a by evaluating (13.35).

As shown in Fig. 13.4, the success probability of PMSs will increase with the
mission progressing. This can be well explained since with the mission process
progressing the remaining mission time is less, but the reduced RUL of the PMS is
not significant in contrast with its long lifetime in this case. Also, we can find that
for the subtle degradation, the lifetime of the PMS will be large in stochastic sense.
Therefore, the mission reliability will maintain in a relatively high level. Figure13.4
reflects this fact. Accordingly, the probability that the mission can be successfully
accomplished before a given time R under condition that the system lifetime is longer
than the total mission time at each phase can be obtained by evaluating (13.36). For
illustration, we set R = 50 and the result is shown in Fig. 13.4b.

It is not surprising that this kind of the mission reliability also has an increasing
trend, as illustrated in Fig. 13.4b. The reason for this is similar to the above result
because the lifetime of the PMS in this case is set to be long enough compared with
the mission time. Therefore, the reduction of the RUL of the PMS is not significant
as the mission progressing. In addition, we can observe that the mission reliability
in the early phase is relatively low. This is resulted from the fact that this kind of
reliability is a ratio, as seen from (13.36) and the denominator of (13.36) is relatively
large in the early phase. However, as the mission progressing, the increase of the
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(a) (b)

Fig. 13.5 The mission reliability calculated by a (13.35), b (13.36)

numerator is faster than the increase of the denominator. This leads to an increasing
trend of this kind of mission reliability.

• Case 2: The degradation is dramatic and thus the lifetime of mission system is
small.

Since the degradation is dramatic, the estimated RUL of the PMS is expected to be
small. This is consistent with the intuition that for an aged PMS, its lifetime naturally
approaches the end and thus there is high probability that the mission will fail. In
order to simulate this case, we set a small failure threshold, such as w = 15. The
reason is that a small threshold corresponds to a short lifetime of the PMS. Similar
to Case 1, we first calculate the mission reliability which represents the probability
that the mission can be successfully accomplished before the system fails. The result
is illustrated in Fig. 13.5a.

Figure13.5a shows that the mission reliability will be lower than the correspond-
ing result in Case 1. Particularly, when the lifetime of mission system is small, the
estimated mission reliability will fluctuate with the mission progressing to some
extent though it still has certain increasing trend. These observations are largely
resulted from the short lifetime of the PMS. Therefore, with the mission process
evolving, the reduced RUL of the PMS is significant in contrast with the remaining
mission time which is estimated from the CM information.

Accordingly, the probability that the mission can be successfully accomplished
before a given time R under condition that the system lifetime is longer than the total
mission time at each phase can be obtained by evaluating (13.36). As the same as the
Case 1, the result is shown in Fig. 13.5b with the setting R = 50. It is interesting to
note that the mission reliability for the success in the required time will experience
a decreasing trend. This differs clearly from the previous results. Similar to the first
type of the mission reliability, when the lifetime of the PMS is small, the estimated
mission reliability of this type will fluctuate with the mission progressing. In this
case, the mission reliability is a conditional probability as formulated in (13.36) and
the denominator of this equation has an increasing trend as shown in Fig. 13.5a. As
well as the result shown in Fig. 13.4, the numerator of (13.36) is a probability to
characterize two events with the “AND” relationship: the event that the mission can
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be successfully accomplished before a given time R and the event that the system
lifetime is longer than the total mission time. However, in this case, the lifetime of the
PMS is small. Therefore, it is naturally expected that the increase of the numerator
of (13.36) is not faster than that of the denominator. These observations finally result
in the decreasing trend of the mission reliability of this type.

13.6.2 Case Study

In this part, we use the CM data of the inertial navigation system to illustrate the
application of the developed method. As a key mission system of the control system
in weapon systems and space systems, an inertial navigation system (INS) plays an
important and irreplaceable role, and its operating state has a direct influence on nav-
igation precision and the testing of the whole control system. In each control system
testing, the INS will experience two phase: precision testing and function check. The
success of these two phases will ensure the success of the testing of the whole con-
trol system. Thus, it is often desired to conduct the mission reliability estimation to
mitigate the risk of the fail of the testing mission. However, the complicate structure
of the INS makes the existing method such as BDD and FT difficult to apply. Thus,
we use the presented method in this chapter to estimate the mission reliability.

In the practice, the sensors fixed in an INS include three gyros and three accelerom-
eters, which measure angular velocity and linear acceleration, respectively. The gyro
fixed on an inertial platform is a mechanical structure having two degrees of freedom
from the driver and sense axis. When the inertial platform is operating, the wheels
of the gyros rotate at very high speeds and can lead to rotation axis wear. In general,
the drift data of gyros along the sense axis can be used as a performance indicator to
evaluate the health condition of an INS and estimate its lifetime. Other data collected
by the sensors can used to model the mission process. The detailed description of
the INS can be referred to [30, 36].

For the used INS in certain space system, which is newly equipped systems,
we conduct a control system testing mission. For the INS, the mission reliability is
that the required mission time is that the mission can be successfully accomplished
before the system fails. Namely, the second definition of the mission reliability is
adopted. After the testing, the mission is completed successfully, and 99 points of
the degradation data and the CM coefficients data are collected with regular CM
intervals 1h in field condition. The collected degradation data and the associated
fitting cure used the presented method in this chapter are illustrated in Fig. 13.6, and
the corresponding failure threshold is 0.15◦/h.

From Fig. 13.6, it can be observed that the presented degradation model can fit
the practical degradation data well. In the following, we mainly give the estimation
results of the mission reliability while the implementation details are similar to the
numerical example and thus are omitted here due to the limited space. To implement
Algorithm 13.1, we set M1 = M2 = Kr = 1000. The estimated mission reliability
is shown in Fig. 13.7.
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Fig. 13.6 The degradation data and the fitted degradation path

Fig. 13.7 The mission reliability

Figure13.7 shows that themission reliability of the INS during this testing process
is high andmore than 0.985 because this testing process is successes in fact. However,
it can also be found that, during about the 20th CM time, the mission reliability
decreases obviously. This observation can be easily verified by Fig. 13.6 since in
about the 20th CM point, the mission process is switched to the second phase and
there is a dramatic degradation trend. Thus, the mission reliability decreases. This
observation is also consistent with the results of numerical example in Sect. 13.6.1.
Through these results, we can find that the reliability estimation in the presented
method can be repeatedly updated during its operation to ensure that themost recently
calculated reliability value accurately reflects the current reality of the health state
of the mission system.
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Table 13.2 Computation time for estimating mission reliability

M1 M2 Kr Computation time (s)

1000 1000 1000 84.6

2000 1000 1000 129.5

2000 2000 1000 135.6

3000 2000 3000 294.8

In this case study, it is interesting to compute the computation time of the whole
algorithm to check whether the presented method can achieve online data processing
for practical application. Therefore, we statistically compute the time needed to
estimate the mission reliability in different cases of M1, M2, Kr . The main results
are summarized in Table13.2.

From the results in Table13.2, it is found that the computation time increases
with the increase of M1, M2, Kr . By comparing the computation time with the CM
interval, it can be found that the computational time needed for the algorithm is much
less than the CM interval (1h) of the used INS. Thus, the online data processing can
be achieved. It is also noted that, for the current application of the INS, the estimation
performance for M1 = M2 = Kr = 1000 is actually satisfactory and in this case the
computation time is less than 90s. We believe that such computation time should be
able to satisfy the demands of the updating frequency for other realistic applications.

In sum, the simulation study and case study illustrate the implementation of the
developed approach and indicates that it can estimate the mission reliability of the
PMS using the CM information related with the phase duration and the degradation
data related with the PMS lifetime. Therefore, when the structure knowledge of the
PMS is not available but the monitored data can be collected, the developed approach
in this chapter could be potentially applied.
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Chapter 14
A Real-Time Variable Cost-Based
Maintenance Model

14.1 Introduction

With advances in conditionmonitoring technologies, the past decadehaswitnessed an
increasingly growing research interest on various aspects of degradation modeling
for prognostics from the observed signals by dedicated sensors [1–4]. This is (at
least partly) caused by its importance in a variety of fields such as maintenance,
inventory control, and public health surveillance and management. When the real-
timemonitoring information is involved in decisionmaking, there are three key issues
for a successful implementation of maintenance under prognostic information.

• How can we best model and predict degradation and remaining useful life (RUL)
of the monitored equipment conditional on the observed information?

• How tomeasure the effect of the prognostic uncertainty onmaintenance decisions?
• When should the maintenance action be done?

Although there are a great number of studies on these three key issues separately, it
has long recognized that how to address these issues jointly in a general framework is
challenging. Particularly,most of the preventivemaintenance policies in the literature
are evaluated with only the expected cost criteria. However, it is generally more
critical to consider not only the expectation of the maintenance cost, but also the
variability of the cost. For example, there are two maintenance policies, A and B.
Under policy A, the maintenance costs $10,000 per month. Under policy B, there
is an 80% probability of a zero cost and a 20% probability of a $50,000 cost for
each month. For both policies, the long-run average of the costs is the same being
$10,000 per month, if the maintenance budget allocation is $10,000 per month,
which will always be affordable under policy A. However, under policy B, the large
variability of the cost from one month to another leads to a high management risk
under the anticipated budget allocation. As a result, policy A is preferable to policy
B in terms of the budget allocation management because the cost of policy A has less
cost variability. Figure14.1 illustrates such uncertainty in maintenance costs resulted
from the uncertainty of random failure.
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Fig. 14.1 Illustration of the uncertainty in maintenance costs

In the literature, Tapiero and Venezia first considered the variability in mainte-
nance cost and presented a replacement policy based on such variability [5]. Moti-
vated by Tapiero and Venezia [5], Chen and Jin [6], Gosavi [7], and Giri and Dohi
[8] investigated many maintenance policies by minimizing the cost with the vari-
ability discount. However, all these works formulated the maintenance policy in the
age-based replacement framework and thus the real-time conditionmonitoring infor-
mation is not considered. Therefore, these policies aimed to schedule themaintenance
activity for a population but not for an individual. However, considering real-time
condition monitoring information is desirable so that the optimal replacement time is
repeatedly updated during equipment operation to ensure themost recently calculated
replacement time accurately reflects the current reality of the monitored equipment.
Recently, Chen et al. in [9] considered a condition-based replacement model based
on the variability of the maintenance cost in condition-based maintenance frame-
work. However, this work did not incorporate the prognostic information. So far, no
chapter considers the cost variability in the condition-based/predictive maintenance
with the prognostic information about equipment’s useful life.

In this chapter, we develop a newmethod to consider the effects of both the expec-
tation of the maintenance cost and its variability. Given the prognostic information
obtained fromconditionmonitoring and variablemaintenance cost,we obtain amain-
tenance decision which is different from that of the mean maintenance cost-based
model under the same setting. The prognostic information is obtained from a degra-
dation process modeled as an adaptive Wiener process in real time. One important
proposition obtained shows that the decision from the proposed model is conserv-
ative as opposed to the case considering the mean cost only. We demonstrate the
proposed method with a practical case study. The results indicate that our method
can effectively mitigate the management risk, but with a small cost increase.

The remainder parts are organized as follows. In Sect. 14.2, we presented a
Wiener-process-based degradation model for prognostics. Section14.3 establishes
the real-time variable cost-basedmaintenancemodel with the prognostic information
involved. Section14.4 provides a practical case study to demonstrate the developed
approach.
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14.2 Degradation Modeling for Prognostics

In this chapter, we consider applying aWiener-process-based model with a recursive
filter algorithm developed to obtain the prognostics information and then use this
information to establish the replacement model.

14.2.1 Degradation Modeling

In general, a Wiener process {X (t), t ≥ 0} can be represented as

X (t) = λt + σ B(t), (14.1)

where λ is a defined drift coefficient, σ > 0 is a diffusion coefficient, and B(t) is the
standard Brownian motion. Without loss of generality, we assume X (0) = 0 in this
chapter.

Since degradation is an inherent characteristic of operating plants, then for a
stochastic model to be able to describe the degradation process, the model must
be infinitely divisible [4]. This implies the model should be able to describe the
degradation at any time and is independent of the previous sampling frequency and
intervals. Here we give a formal definition of the property of infinite divisibility for
a stochastic process, {X (t), t ≥ 0}.
Definition 14.1 A stochastic process {X (t), t ≥ 0} is infinitely divisible if for a
given fixed time t and any n ∈ N, there exists a time sequence {ti }1≤i≤n with
0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t and independent, identically distributed random vari-
ables Xt1 , Xt2−t1 , . . . , Xt−tn where Xti+1−ti = X (ti+1) − X (ti ) such that X (t) = Xt1
+ Xt2−t1 + · · · + Xt−tn .

We demonstrate in the following that a Wiener process is infinitely divisible and
is a better choice for modeling a physical degradation process.

Proposition 14.1 A Wiener process is infinitely divisible.

Proof For an arbitrary time length t , and we divide it into n mutually exclu-
sive intervals, 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ tn+1 = t where n ∈ N. Define Xti+1−ti =
X (ti+1) − X (ti ). Then Xti+1−ti follows Xti+1−ti = λ(ti+1 − ti ) + σ B(ti+1 − ti ) from
the property of theWiener process. The total degradation is the summation of Xti+1−ti ,
e.g., X (t) = lim |n→∞

∑n
i=0 Xti+1−ti .

Since all Xti+1−ti , i = 0, 1, . . . n are independent and follow N
(
λ (ti+1 − ti ) , σ 2

(ti+1 − ti )) from the property of the Wiener process, it follows that
∑n

i=0 (X (ti+1)

−X (ti )) is also normal with

E
[∑n

i=0
(X (ti+1) − X (ti ))

]
=

∑n

i=0
E

[
(X (ti+1) − X (ti ))

]
=

∑n

i=0
(λ (ti+1 − ti )) = λtn+1 = λt, (14.2)
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Fig. 14.2 The result for fatigue crack length data set

Var
[∑n

i=0

(
X (ti+1) − X (ti )

)] =
∑n

i=0
Var

[(
X (ti+1) − X (ti )

)]

=
∑n

i=0

(
σ 2 (

ti+1 − ti
)) = σ 2tn+1 = σ 2t, (14.3)

which hold any n ∈ N.

In order to further clarify the necessity of such infinite divisibility in modeling
physical degradation process, we give an illustrating example as follows.

In the literature, there are many public degradation data sets from several devices
of the same type, such as fatigue crack data and laser date in [10]. We also have
two data sets of the LEDs at hand from the accelerating degradation tests at current
170mA and 320mA, respectively. These data really facilitate our illustration. Due
to the limited space, we do not provide the data but the interested readers can obtain
the used data on request. In order to show the relationship between the uncertainty
during degradation process and the sampling numbers, we give a brief procedure as
follows. We assume that there are M sampling paths, each path has N CM points,
and the CM time points are same among different paths. The above-mentioned data
sets are the case here. In simulation, we first fix the first and the last CM points and
then randomly extract n CM point, where n = 1, 2, . . . , N − 2. Once the random
sampling is completed, we can obtain the variance of the degradation process during
the first and the last CM points in statistical sense using the data from the extracted
time points, the first and the last points. For each n, we repeat the random sampling
process 1000 times and calculated the mean as the final variance. Figures14.2, 14.3,
14.4, and 14.5 show the obtained results of the used data sets.

Clearly, we can observe from these figures that the sampling numbers have limited
impact on the degradation characteristic, since our simulation is based on random
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Fig. 14.3 The result for laser data set

Fig. 14.4 The result for the LEDs data at 170mA

sampling from the data sets. Therefore, we may reasonably infer that a physical
degradation process should be free from the constraint of the sampling frequency
and intervals.
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Fig. 14.5 The result for the LEDs data at 320mA

14.2.2 RUL Estimation

Considering the potential for updating knowledge of the process when new degra-
dation observations become available, for t ≥ ti , we model the degradation process
over time since ti as

X (t) = xi + λ(t − ti ) + σ B(t − ti ). (14.4)

To incorporate the history of the observations of the degradation, we con-
sider an updating procedure for the drifting parameter λ by making λ evolving
as λi = λi−1 + η over time, where η ∼ N (0, Q). As such, the drift parameter is
evolving as a time-dependent variable with a random distribution, conditional on
the observed data up to time ti . The reason to make λ time-varying with the col-
lecting data is that the degradation trend is dominated by the drift coefficient while
the variance coefficient reflects the uncertainty in degradation process. In order to
establish the linkage between the drift parameter and the observation history up to
date, the degradation equation can be reconstructed and taken to be a self-organizing
state-space model as

{
λi = λi−1 + η

xi = xi−1 + λi−1(ti − ti−1) + σεi
, (14.5)

where the error terms are distributed as η ∼ N (0, Q) and εi ∼ N (0, ti − ti−1). The
use of ti − ti−1 as the variance of εi is derived by the property of Brownian motion.
In this chapter we assume that the initial drift λ0 follows a normal distribution with
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the mean μ0 and the variance P0. As such, the drift parameter is considered as
a latent “state” and can only be estimated from the historical information X1:i =
{x1, x2, . . . , xi } due to its unobservable nature. In the established state-space model
(14.5), the state equation and the observation equation are linear and the associated
noises are Gaussian. As such, the estimation of the drift parameter λ̂i can be easily
obtained by Kalman filtering once new observation xi is available at ti . The updated
estimation of λi can be obtained from the following Kalman filtering algorithm.

Algorithm 14.1 (Kalman filtering algorithm)
Step 1: Initialize μ0, P0.
Step 2: State estimation at time ti
Pi |i−1 = Pi−1|i−1 + Q
Ki = (ti − ti−1)

2Pi |i−1 + σ 2(ti − ti−1)

λ̂i = λ̂i−1 + Pi |i−1(ti − ti−1)K
−1
i

(
xi − xi−1 − λ̂i−1(ti − ti−1)

)

Step 3: Updating variance Pi |i = Pi |i−1 − Pi |i−1(ti − ti−1)
2K−1

i Pi |i−1.

Based on the threshold, the RULmodeling principle is presented as follows.When
degradation X (t) modeled as Eq. (14.4) reaches a preset critical level w, the plant
can be declared to be failed and thus there has no useful lifetime left. From the first
hitting time concept, the RUL Li at ti can be defined as

Li = inf
{
li : X (ti + li ) ≥ w|X1:i ,∀1 ≤ j ≤ i, x j < w

}
, (14.6)

with the probability density function (PDF) f Li |X1:i ( li |X1:i ).
As a result of the law of total probability, the PDF of the RUL at time ti can be

formulated with the available degradation measurement X1:i as

fLi |X1:i (li |X1:i ) = w − xi√
2πl3i

(
Pi |i li + σ 2

) exp
⎛
⎜⎝−

(
w − xi − λ̂i li

)2

2li
(
Pi |i li + σ 2

)
⎞
⎟⎠ , li > 0,

(14.7)

where λ̂i and Pi |i can be obtained from the previous filtering algorithm.
Once the new degradation observation is available and the parameter is updated,

theRULof thismonitored asset can be computed usingEq. (14.7). In fact, the parame-
ters in the degradation model and state-space model can be estimated simultaneously
in conjunction with updating the drifting parameter.

14.3 Replacement Decision Modeling

In order to study a variable cost-based maintenance policy, the measure of the cost
variability needs to be first defined. Several measures of variability for stochastic
processes with rewards have been discussed and compared in [11]. In this chapter,
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the long-run variance measure recommended by Filar et al. [11] and Chen and Jin
[6] is used. A discrete time scale is considered. Let t=1, 2,…denote the discrete time
units, and Cπ

t denote the cost spent at time unit t under maintenance policy π .
From [6, 11], the long-run average cost per unit time under maintenance policy

π can be defined as

ϕπ= lim
T→∞

1

T

∑T

t=1
Cπ
t . (14.8)

The long-run variance of the cost under maintenance policy π is defined as

V π= lim
T→∞

1

T

∑T

t=1

[(
Cπ
t − ϕπ

)2]
. (14.9)

The long-run mean square cost under maintenance policy π is defined as

ψπ= lim
T→∞

1

T

∑T

t=1

(
Cπ
t

)2
. (14.10)

Then the variable cost-based maintenance optimization problem can be formu-
lated as

min
π

[
(ϕπ)

2 + αV π
]
, α ≥ 0. (14.11)

where π is the class of the considered maintenance polices, and α is the cost-
variability-sensitive factor. Since ϕπ > 0, the policies minimizing (ϕπ)2 must be
the same as those minimizing ϕπ . Therefore, this objective function is equivalent to
the traditional cost policy when α = 0.

In the above equation,α can be interpreted as the relativeweight of variability. The
intuitive meaning of α < 1 is that the decision maker considers that the improvement
in variability has less impact than the same degree of improvement in the mean cost.
In other words, the cost variability is less significant than the mean cost. Similarly,
α > 1 means that the variability has a more significant impact than the mean cost
on the decision making. We note that the most common intuition of the decision
makers is to consider the mean cost to be more significant than the cost variability.
Therefore, the decision makers should be cautious when they decide to use an α,
with a value greater than one. When the cost variability is more important than the
average cost for the decision makers, a choice of α with value greater than one might
be reasonable.

Under prognostic information provided in Sect. 14.2, the above optimization prob-
lem can be formulated as Variance-Penalized Decision Problem. That is, in degrada-
tion observation xi at the i th condition monitoring point ti , denoted the state (i, xi ),
the associated variable cost optimization problem can be represented as follows:

Cπ (i, xi ) = min
t∗∈[ti ,∞)

[
(ϕπ(i, xi ))

2 + αV π (i, xi )
]
, α ∈ [0,∞), (14.12)
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with

ϕπ (i, xi ) = cp + (c f − cp) Pr(Li < t − ti |X1:i )
ti + (t − ti ) (1 − Pr(Li < t − ti |X1:i )) + ∫ t−ti

li=0 li fLi ( li |X1:i )dli
, (14.13)

Vp =
c2p +

(
c2f − c2p

)
Pr(Li < t − ti |X1:i ) − (

cp + (c f − cp)Pr(Li < t − ti |X1:i )
)2

ti + (t − ti ) (1 − Pr(Li < t − ti |X1:i )) + ∫ t−ti
0 li fLi ( li |X1:i )dli

,

(14.14)

where Pr( Li < t − ti |X1:i ) = ∫ t−ti
0 fLi |X1:i (li |X1:i )dli and fLi |X1:i (li |X1:i ) can be

obtained from Eq. (14.7), t is the decision variable representing the planned replace-
ment time at the i th CM point, cp is the mean cost of a preventive replacement, and
c f is the mean replacement cost associated with the failure; ϕπ(i, xi ) and V π (i, xi )
are the long-run average cost per unit time and long-run variance of the cost under
maintenance policy π at the state (i, xi ), respectively.

Based on the above replacement decision modeling, we have the following main
result.

Proposition 14.2 Under the state (i, xi ), let t∗φ(i, xi ) ≡ inf A (φπ(i, xi )) where
A (φπ(i, xi )) is the set of all optimal solutions which minimize φπ(i, xi ), and t∗(i, xi )
be an optimal solution of the optimization problem min

t∗∈[ti ,∞)

[
(ϕπ(i, xi ))2+αV π (i, xi )

]
with a fixed α. Then the followings hold:

(1) if α > 0, then t∗(i, xi ) ≤ t∗φ(i, xi ). The inequality is strict when t∗φ(i, xi ) < ∞.
(2) let α1 > α2 ≥ 0, t∗α1

(i, xi ) ≡ inf A (α1; i, xi ), and t∗α2
(i, xi ) ≡ inf A (α2; i, xi ),

then t∗α1
(i, xi ) ≤ t∗α2

(i, xi ), where A (αi ; i, xi ) , i = 1, 2 denote the sets of all opti-
mal solutions which minimize (ϕπ(i, xi ))2 + αV π (i, xi ) with α = αi .

The optimal replacement interval under the variable cost-based maintenance pol-
icy tends to be shorter than that under the traditional mean cost maintenance policy.
In other words, the variable cost optimal policy tends to be more conservative than
the mean cost optimal policy. In addition, the larger the relative weight α, the shorter
is the preventive replacement interval. This seems to be consistent with the intu-
ition that the maintenance risk can be reduced through increasing the replacement
frequency.

14.4 A Case Study

As a key device of the INS inweapon systems, an inertial platform plays an important
and irreplaceable role [12]. Its operating state has a direct influence on navigation
precision. The sensors fixed in an inertial platform mainly include three gyros and
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Fig. 14.6 The actual gyro’s drift data and the predictions with adapted Brownian motion

three accelerometers,whichmeasure angular velocity and linear acceleration, respec-
tively. When the inertial platform is operating, the wheels of the gyros rotate at very
high speeds and can lead to rotation axis wear and finally result in the gyros’ drift.
As the wear is accumulated, the drift degrades and finally leads to the failure of
gyros. As such, the drift of gyros is often used as a performance indicator to evaluate
the health condition of an inertial platform and scheduling maintenance activities.
In our study, we take the drift degradation measurement along the sense axis for
illustrative purposes, since this variable plays a dominant role in the assessment of
gyro degradation. The obtained field data are illustrated in Fig. 14.6 with regular CM
intervals 2.5h.

In the practice of the INS health monitoring, it is usually required that the drift
measurement along the sense axis should not exceed 0.37 (◦/h). This threshold is
predetermined at the design stage and is strictly enforced in the practice since an
INS is a critical device used in a weapon system. Using the proposed method, the
predictions of the gyro’s drift and the distribution of the RUL can be obtained at
each CM point. The predicted drifting path is shown in Fig. 14.6. Simultaneously,
the PDF of the RUL can be obtained at each monitoring point.

In this case study, we set c f = 10000RMB and cp = 4000RMB. Figure14.7
illustrates the expected cost per unit time against the associated time until replace-
ment, i.e., (ϕπ(i, xi ))2, and the variable cost with α = 0.3 and α = 0.05, at three
different CM points, the 50th , 59th , and 71st CM points, corresponding to the oper-
ating time 125, 147.5, and 177.5h, respectively.

It can be seen from Fig. 14.7 that optimal replacement times (denoted by circles)
under variable cost policy are always earlier than the correspondingmean cost policy,
at different CM points. Additionally, it is noted that the optimal decision time is
dynamic so that the decision is conditional on the CM history. To clearly have a
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Fig. 14.7 Illustrations of the condition-based replacement decision at three different CM points

Table 14.1 Optimal cost associated with mean cost policy and variable cost policy

Mean cost policy Variable cost policy
with α = 0.3

Variable cost policy
with α = 0.05

50th point 748.59 753.21 751.6

59th point 656.41 660.03 658.85

71th point 993.23 1004.6 1000.6

look at the difference of the optimal maintenance cost between mean cost policy and
variable cost, we summarize the minimized cost in the following Table14.1.

The results in Table14.1 indicate that our developed variable cost method has a
small cost increase as opposed to the mean cost policy. However, our method can
effectively mitigate the management risk by scheduling the replacement early.
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Chapter 15
An Adaptive Spare Parts Demand
Forecasting Method Based on Degradation
Modeling

15.1 Introduction

System prognostics and health management (PHM) is a new health management
methodology proposed for complex engineering systems to reduce maintenance
costs, improve the system operating reliability and safety, and mitigate the fail-
ure risk [1, 2]. In PHM practice, proactive maintenance and spare parts ordering
are two fundamental components for PHM of complex engineering systems. Spare
parts need arises whenever a system fails or requires replacement and repair In some
sectors, such as the aerospace and automotive industries, a wide range of spare parts
are held in stock. Their management is therefore an important task [3].

It is pointed out by Wang and Syntetos in [4] that demand arising from system
failure and preventive maintenance is scheduled and is stochastic with regard to the
demand size but deterministic as far as the demand arrival is concerned. Demand
arising from corrective maintenance, after a failure has occurred, is stochastic with
regard to the time arrival but deterministic in quantity (being one in most cases).
Such demand structures are typically intermittent in nature, meaning that demand
arrives infrequently with time periods showing no demand at all. In this case, spare
parts demand sizes may be highly variable leading to what is termed as ‘lumpy’
demand. Intermittent demand patterns are very difficult to model from a forecasting
perspective because of the associated dual source of variation (demand arrivals, or
correspondingly inter-demand intervals, and demand sizes) [4] There have been a
number of considerable advancements in this area in the recent years, all of which
though have been mainly focusing on coping, reactively, with the compound nature
of the demand patterns under concern. However, no attempts have been made to
characterize the sources of such demand patterns for the purpose of developing more
effective and proactive mechanisms. Such an approach would require looking at the
industrial failure processes that generate the relevant demand patterns.

Until now, many forecasting methods have been developed to predict spare parts
demand. In thesemethods, if historical data of spare parts demand are available, time-
seriesmethods are used to forecast spare parts’ requirements. Croston in [5] proposed

© National Defense Industry Press and Springer-Verlag GmbH Germany 2017
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a method that captures the compound nature of the relevant demand patterns. In
particular, he suggested using Single Exponential Smoothing (SES) for separately
forecasting the interval between demand incidences and the demand sizes. The ratio
of the latter over the former may then be used in order to estimate the mean demand
per time period. Based on this classical method, many extensions have been made
to improve the accuracy of Croston’s method in spare parts forecasting (e.g., [6–9]).
Other bootstrapping methods for forecasting intermittent demands have also been
discussed by [10, 11].

Inmaintenance related spare part forecasting studies, it is noted however that most
researches have treated maintenance as an area of research on its own, and did not
consider the impact of the availability of spare parts on the plant downtime and cost
due to maintenance. There are some exceptions, in which inventory policies have
been jointly considered with maintenance-related issues [4, 12] Attention has been
paid to how equipment failures impact on the spare parts inventory policy. Overall,
research in the area of forecasting for intermittent demand items has developed
rapidly in recent years with new results implemented into software products because
of their practical importance [13]. Nevertheless, all such studies share a common
characteristic: they attempt to provide the best possible modeling of the underlying
demand characteristics without questioning the demand generation process itself and
the predictive results do not make use of the real-time condition monitoring (CM)
degradation data of the system.

Together with the above discussions, it is concluded that spare parts demand
arises from the maintenance activity. However, all maintenance actions are closely
related with the system lifetime. Therefore, how to forecast spare parts demand via
predicting the system lifetime is a novel idea which is different from traditional spare
parts forecasting methods. Recently,Wang and Syntetos in [4] presented a novel idea
to forecast spare parts demand considering the very sources of the demand generation
process from maintenance. In [4], the maintenance process is modeled by the delay
time model and the presented method was compared with a well known time-series
method. However, themethod in [4] is dependent on the statistical data of failure time
and thus does not utilize the real-time operating state and CM data of the system.

The above observation leads to themain focus of this chapter to present an adaptive
spare parts demand forecasting method based on degradation modeling of the CM
data. Toward this end, a degradationmodeling basedmethod is proposed to adaptively
forecast the demand of spare parts in this chapter. In the presented method, the
system’s lifetime is predicted in a probability form by modeling its degradation
process as aWiener process. To achieve adaptive lifetime estimation, the degradation
rate parameter is recursively updated by Kalman filtering algorithm and then the
lifetime is derived by considering the updated degradation rate parameter. Based on
the lifetime distribution, the demand distribution of spare parts in a future time span
can be forecasted by evaluating the convolution of the lifetime distribution. That is
to say, spare parts forecasting is achieved by predicting the failure numbers of the
system in a future time span. Finally, a case study for gyro’s data is provided to
illustrate the implementation of the proposed method.
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The remainder of this chapter is structured as follows: In Sect. 15.2, the degrada-
tion modeling description is given. Section15.3 provides the adaptive lifetime pre-
diction method. In Sect. 15.4, we present an adaptive spare parts forecasting method.
Section15.5 provides a case study for illustration.

15.2 Degradation Modeling Description

In this section, we present the degradation modeling description of the system. In
degradationmodeling practice,Wiener processes have been extensively used to char-
acterize the degradation processes of systems [2]. In physics, a Wiener process aims
at modeling the movement of small particles in fluids and air with tiny fluctuations.
A characteristic feature of this process in the context of reliability is that the plant’s
degradation can increase or decrease gradually and accumulatively over time. The
tiny increase or decrease in degradation over a small time interval behaves simi-
larly to the random walk of small particles in fluids and air. Therefore, this type of
stochastic processes has been widely used to characterize the path of degradation
processes where successive fluctuations in degradation can be observed, such as the
degradation observations of rotating element bearings, LED lamps, self-regulating
heating cables, laser generator, bridge beams, and gyros’ drifting (e.g., [14–17]).

Specifically, a Wiener-process-based degradation model can be represented as

X (t) = λt + σ B(t), (15.1)

where λ is the drift coefficient, σ > 0 is the diffusion coefficient, and B(t) is the
standard Brownian motion representing the stochastic dynamics of the degradation
process with B(t) ∼ N (0, t).

Based on the stochastic degradation process {X (t), t ≥ 0} represented by (15.1),
the system lifetime can be defined by using the concept of the first hitting time (FHT)
[18]. Based on the FHT, the principle of lifetime estimation is that the system failure
is defined as the first time of {X (t), t ≥ 0} hits the failure threshold w. As such, the
lifetime of the system is defined as

T = inf { t : X (t) ≥ w| X (0) < w} (15.2)

According to the definition of the lifetime T in (15.2), the cumulative distribution
function and the probability density function are denoted as FT (t) and fT (t), respec-
tively. By the known results, the lifetime T follows an inverse Gaussian distribution,
and the according CDF FT (t) and PDF fT (t) are as follows:

fT (t) = w

σ
√
2π t3

exp
(−(w − λt)2/2σ 2t

)
(15.3)
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FT (t) = 1 − Φ

(
w − λt

σ
√
t

)
+ exp

(
2λw

σ 2

)
Φ

(−w − λt

σ
√
t

)
. (15.4)

In the system operating process, the degradation process is monitored at discrete
times. As a result, the system lifetime can be estimated based on the monitoring
data. Suppose the degradation process is discretely monitored at time 0 = t0 <

t1 < . . . < tk and let xk = X (tk) denote the degradation state at time tk . The set of
the degradation states up to tk is represented by X0:k = {x0, x1, x2, . . . , xk}, where
t0 = 0, k ≥ 0, and tk is the current time.

Therefore, using the concept of the FHT, we define the remaining useful life
(RUL) Lk of the system at time tk as

Lk = inf {lk > 0 : X (lk + tk) ≥ w} . (15.5)

with PDF f Lk |w,X0:k ( lk |w, X0:k) and CDF

FLk |w,X0:k ( lk |w, X0:k) = Pr(Lk ≤ lk |w, X0:k) = Pr

(
sup
lk>0

X (tk + lk) ≥ w

∣∣∣∣∣w, X0:k

)
, (15.6)

where X0:k is the observed degradation states available up to tk .
In the next sections, our primary goal is to adaptively estimate the conditional

PDF f Lk |w,X0:k ( lk |w, X0:k) and CDF FLk |w,X0:k ( lk |w, X0:k) based on X0:k .

15.3 Adaptive Lifetime Estimation

In this chapter, we consider the updating mechanism for the lifetime estimation. For
in service system at time tk with the obtained degradation state xk , we can use

X (t) = xk + λ(t − tk) + σ B(t − tk), f or t > tk . (15.7)

From (15.7), we directly have the PDF and CDF of the RUL at tk as

f Lk |w,xk ( lk |w, xk) = w − xk

σ

√
2πl3k

exp

(
− (w − xk − λlk)2

2σ 2lk

)
(15.8)

FLk |w,xk ( lk |w, xk) = 1 − Φ

(
w − xk − λlk

σ
√
lk

)
+ exp

(
2λ(w − xk)

σ 2

)
Φ

(−w + xk − λlk
σ
√
lk

)
(15.9)

It is noted that (15.8) and (15.9) use only the current degradation data, but not
its history before tk . However, this is a Markov assumption. Ideally, the future FHT
should depend on the path that the degradation has involved to date. Consequently,
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it is desired to utilize the degradation data to date for evaluating the RUL of the
degraded system.

To incorporate the history of the observations, in this chapter the degradation rate
parameter λ is modeled by a random walk model λk = λk−1 + η over time, where
η ∼ N (0, Q). A similar idea can also be found in [19]. Motivated by the state space
model, a self-organizing state-space model is constructed as

λk = λk−1 + η, (15.10)

xk = xk−1 + λk−1(tk − tk−1) + σεk, (15.11)

where t0 = 0, x0 = 0, and εk ∼ N (0, tk − tk−1). The use of tk − tk−1 as the variance
of εk is required by the property of Brownian motion. Equation (15.10) is called the
system equation, while (15.11) is the observation equation.

To adaptively update the degradation rate parameter λ based on X0:k , it is assumed
that λ0 follows a normal distribution with mean a0 and variance P0. As such, the
degradation rate parameter is considered as a hidden state and can be estimated
from the observations up to tk , denoted by X0:k . Therefore, in (15.10), λk follows a
distribution which can be estimated by a recursive filter once X0:k is available. We
denote its mean by λ̂k = E(λk | X0:k) and its variance by Pk|k = var(λk | X0:k).

In stochastic filtering framework, recursion solution of p(λk | X0:k) can be com-
puted from p(λk−1| X0:k−1) by Bayesian rule as follows:

p(λk | X0:k) =
∫
p(λk |λk−1 )p( xk | λk−1, X0:k−1)p(λk−1| X0:k−1)dλk−1

p( xk | X0:k−1)
. (15.12)

It has beenwell established that if (15.10) and (15.11) are used, (15.12) isGaussian
with mean λ̂k and variance Pk|k which can be computed by the Kalman filter [19].
The recursive estimations for λ̂k and Pk|k using Kalman filtering are summarized as
Algorithm 15.1 in the following.

Algorithm 15.1 (Kalman filtering algorithm)
Step 1: Initialize λ̂0 = a0, P0.
Step 2: State estimation at time tk
Pk|k−1 = Pk−1|k−1 + Q
Kk = (tk − tk−1)

2Pk|k−1 + σ 2(tk − tk−1)

λ̂k = λ̂k−1 + Pk|k−1(tk − tk−1)K
−1
k

(
xk − xk−1 − λ̂k−1(tk − tk−1)

) .

Step 3: Updating variance Pk|k = Pk|k−1 − Pk|k−1(tk − tk−1)
2K−1

k Pk|k−1.

Based on (15.10)–(15.12), the PDF of λk conditional on X0:k is

p(λk | X0:k) = 1√
2π Pk|k

exp

[
−

(
λk − λ̂k

)2
/

2Pk|k
]

, (15.13)

where the dependence between λk and X0:k is contained in λ̂k and Pk|k .
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From (15.10) and (15.11), the PDF and CDF of the RUL at time tk defined in
(15.5) as follows [20]:

f Lk |w,λk ,xk ( lk |w, λk, xk) = w − xk

σ

√
2πl3k

exp

(
− (w − xk − λlk)2

2σ 2lk

)
(15.14)

FLk |w,λk ,xk ( lk |w, λk , xk ) = 1 − Φ

(
w − xk − λlk

σ
√
lk

)
+ exp

(
2λ(w − xk )

σ 2

)
Φ

(−w + xk − λlk
σ
√
lk

)

(15.15)

Asmentioned above, λ evolves as a random variable in (15.10) with a distribution,
p(λk | X0:k). By the total law of probability, the PDF and CDF of the updated RUL
at tk based on the updated PDF of λk can be obtained as

f Lk |w,X0:k ( lk |w, X0:k) = w − xk√
2πl3k

(
Pk|klk + σ 2

) exp

⎛
⎜⎝−

(
w − xk − λ̂klk

)2
2lk

(
Pk|klk + σ 2

)
⎞
⎟⎠ . (15.16)

FLk |w,X0:k ( lk |w, X0:k) = 1 − Φ

(
w−xk−λ̂k lk√
Pk|k l2k+σ 2lk

)

+ exp
(
2λ̂k (w−xk )

σ 2 + 2Pk|k (w−xk )2

σ 4

)
Φ

(
− 2Pk|k (w−xk )lk+σ 2

(
λ̂k lk+w−xk

)

σ 2
√

Pk|k l2k+σ 2lk

) . (15.17)

Comparing (15.17) with (15.15), we observe that the observation history and the
variance of λk are involved in (15.17), which is also recursively updated. This RUL
estimated results will be used to forecast the demand of spare parts. To do so, the
forecasting results are related with the system operating state since the degradation
state of the system is involved in (15.17).

15.4 Adaptively Forecasting Spare Parts Demand

As discussed previously, the system failure leads to the demand of spare parts
[21–23]. Therefore, forecasting the spare parts demand can be achieved by pre-
dicting the failure number of the system in a future time span from the current time.
We will elaborate on this issue in the following.

In this chapter, we assume that the system is immediately replaced once failure
occurs. Further, assume that the degradation processes of the system after and before
replacement are the same and the lifetimes of different systems of the same kind are
independent. That is to say, the lifetimes and the system and its spare part are inde-
pendent and identically distributed. For spare parts demand forecasting, let Dk(Δ)

denote the demand of spare parts in a future time interval Δ from the current time tk ,
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i.e., failure number. Considering that the system lifetime is random, the demand of
spare parts Dk(Δ) is also a random variable. Moreover, Dk(Δ) is discrete random
variable. Namely, Dk(Δ) = n (n = 0, 1, . . .) means that there are n failures of
the system during the time interval (tk, tk + Δ]. As a result, forecasting spare parts
demand needs to evaluate the n-fold convolution of the RUL distribution.

By the convolution property of the inverse Gaussian distribution, the probability
of Dk(Δ) = n at tk can be formulated as

Pr(Dk(Δ) = n| X0:k) = Pr(( Lk | nw, X0:k) ≤ Δ, ( Lk | (n + 1)w, X0:k) > Δ)

(15.18)

where the event {( Lk | nw, X0:k) ≤ Δ, ( Lk | (n + 1)w, X0:k) > Δ} denotes that there
are n failures during (tk, tk + Δ].

Further, we have

Pr( Dk(Δ) = n| X0:k) = Pr(( Lk | nw, X0:k) ≤ Δ) − Pr(( Lk | (n + 1)w, X0:k) ≤ Δ)

(15.19)

where Pr(( Lk | nw, xk) ≤ Δ) is probability that the first hitting time of {X (t), t ≥ 0}
not greater than Δ while the initial degradation state is xk and the according failure
threshold is nw.

Specifically, according to the definition of the RUL in (15.5) and the formulation
of the RUL distribution in (15.6), we directly have

Pr(( Lk | nw, xk) ≤ Δ) = FLk |nw,X0:k (Δ| nw, X0:k) (15.20)

where FLk |nw,X0:k (Δ| nw, X0:k) can be computed by (15.17) as

FLk |nw,X0:k (Δ| nw, X0:k) = 1 − Φ

(
nw−xk−λ̂kΔ√
Pk|kΔ2+σ 2Δ

)

+ exp
(
2λ̂k (nw−xk )

σ 2 + 2Pk|k (nw−xk )2

σ 4

)
Φ

(
− 2Pk|k (nw−xk )Δ+σ 2

(
λ̂kΔ+nw−xk

)

σ 2
√

Pk|kΔ2+σ 2Δ

) . (15.21)

Therefore, the probability of the spare parts demand Dk(Δ) = n can be calculated
as follows:

Pr(Dk(Δ) = n| X0:k) = FLk |nw,X0:k (Δ| nw, X0:k) − FLk |(n+1)w,X0:k (Δ| nw, X0:k)
(15.22)

From (15.22), it is found that the probability distribution of the predicted spare
parts demand Dk(Δ) is closely related with the system operating state X0:k . Thus,
such forecasting result reflects the actual operating state of the system in service and
thus meets the practical desire of the system health management.

Based on (15.22), the expectation and variance of the forecasting spare parts
demand Dk(Δ) during (tk, tk + Δ] can be respectively formulated as
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E [Dk(Δ) |X0:k ] =
∞∑
n=0

(n · Pr(Dk(Δ) = n| X0:k)) (15.23)

var [Dk(Δ)| X0:k] =
∞∑
n=0

(
n2 · Pr(Dk(Δ) = n| X0:k)

) − (E [Dk(Δ)| X0:k])2

(15.24)

Together with the results in (15.22)–(15.24), we have formulated the probability
distribution, the mean and variance of spare parts demand. These results can be used
in PHM related decision makings, such as inventory control and joint spare parts
ordering and replacement.

15.5 Adaptive Parameter Estimation

In (15.17) and (15.22)–(15.24), the model parameters, including a0, P0, Q and σ 2,
should be estimated. Denote θ = [a0, P0, Q, σ 2]T as a parameter vector. In this
chapter, we use the expectation maximization (EM) algorithm to estimate θ , since
we treat λk as a hidden variable which is given in (15.10). For notation simplicity,
let ϒk = {λ0, λ1, . . . , λk}. Then, we have

Lk(θ) = p(X0:k |θ ) = 
k(θ) − log p(ϒk | X0:k, θ), (15.25)

where

k(θ) = log p( X0:k, ϒk | θ). (15.26)

As a result, the EM algorithm can be used for estimating θ at tk , denoted by θ̂ k

according to the following two steps:

• E-step: Calculate


(θ | θ̂ (i)

k ) = E
ϒk |X0:k ,θ̂

(i)

k

{
k(θ)} , (15.27)

where θ̂
(k)

k = [a(i)
0,k, P

(i)
0,k, Q

(i)
k , (σ 2

k )(i)]T denotes the estimated parameters in the i th
step conditional on X0:k .

• M-step: Calculate

θ̂
(i+1)

k = argmax
θ

{
E

ϒk |X0:k ,θ̂
(i)

k

{
k(θ)}
}

. (15.28)

Then, we iterate the E-step andM-step until a criterion of convergence is satisfied.
The details of the algorithm can be referred to [19].
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15.6 Case Study

In this section, we provide a practical case study for gyros in an inertial navigation
system (INS) to illustrate the application of the presented forecasting method. As a
key device of the INS, an inertial platform plays an important and irreplaceable role
in the INS. The sensors fixed in an inertial platform include three gyros and three
accelerometers. The gyro fixed on an inertial platform is a mechanical structure
having two degrees of freedom from the driver and sense axis. When the inertial
platform is operating, the wheels of the gyros rotate at very high speeds and can
lead to rotation axis wear. As the wear is accumulated, the bearings on the gyros’
electric motor will become deformed and such deformation can lead to the drift of
the gyros. The increasing drift finally results in the failure of gyros and then the
inertial platform. As such, the drift of gyros is often used as a performance indicator
to evaluate the health condition of an inertial platform and to schedule maintenance
activities.

In this study,we assume thatCMvalues of drift coefficients reflect the performance
of the inertial platform, and the larger the drift coefficients monitored are, the worse
the performance is. Therefore, according to the CM data and technical index of
the inertial platform, failure prediction can be implemented by modeling the drift
coefficients. Generally, the drift degradationmeasurement along the sense axis, KSX ,
plays a dominant role in the assessment of gyro degradation. In our study, we take
the CM data of KSX as the degradation signals and use them for predicting the spare
parts demand of the gyro. For the monitored INS, 73 points of drift coefficients data
were collected with regular CM intervals 2.5h in field condition. The collected data
are illustrated in Fig. 15.1.

Fig. 15.1 The actual gyro’s drift data and the predictions of the presented model
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Fig. 15.2 Illustration of the PDF of the RUL at six different CM points

In the practice of the INS health monitoring, it is usually required that the drift
measurement along the sense axis should not exceed 0.37(◦/h). Using our model,
the predictions of the gyro’s drift and the distribution of the RUL can be obtained at
each CM point. The one step predicted drifting path is illustrated in Fig. 15.1 to show
the fitness of the model to the gyro’s degradation data. Clearly, the predicted results
match with the actual data well. This demonstrates that our developed model can
model the gyro’s drift degradation data effectively. Figure15.2 illustrates the PDFs
of the RUL at different CM points.

As shown in Fig. 15.2, the actual RUL falls within the range of the estimated PDF
of the RUL at each CM point and further the estimated PDF of the RUL becomes
sharper as the degradation data are accumulated. This implies that the uncertainty
of the estimated RUL is reduced since more data are utilized during estimating the
model parameters. Additionally, it can be observed that the estimated mean RUL and
the actual RUL match each other well.

Based on the above estimated RUL results, provided that the predictive interval
Δ is given, the probability distribution of the spare parts demand can be obtained by
(15.22). For example,whenΔ = 60 (h) andΔ = 300 (h), the probability distributions
of the spare parts demand at different CM times are summarized in Tables15.1 and
15.2, respectively.

In Tables15.1 and 15.2, for other values of n, the probability is 0 and thus results
are omitted. From the results in Tables15.1 and 15.2, it can be observed that the
demand of the spare parts increases over time, and the demand will experience a
monotone increasing trend with the predictive interval Δ. To further have a look
at the forecasting results of the presented method, we show the progressions of the
results of (15.23) and (15.24) underΔ =300h as the system operates. The calculated
results are illustrated in Figs. 15.3 and 15.4.
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Table 15.1 Probability distributions of the spare parts demand at different CM times withΔ =60h

tk Δ = 60h

n=0 n=1 n=2

Pr( Dk(Δ) = n| X0:k) 25h 0.9510 0.490 0.00

125h 0.1238 0.8762 0.00

180h 0.0030 0.9970 0.00

Table 15.2 Probability distributions of the spare parts demand at different CM timeswithΔ=300h

tk Δ = 300h

n=0 n=1 n=2 n=3 n=4

Pr( Dk(Δ) = n| X0:k) 25h 0.0005 0.0916 0.6312 0.2705 0.0062

125h 0.0000 0.231 0.7419 0.2347 0.003

180h 0.0000 0.288 0.8376 0.1336 0.0029

Fig. 15.3 Mean of the forecasting spare parts demand

The results in Figs. 15.3 and 15.4 indicate that the demand of the spare parts can be
adaptively updated as the operating state of the systemchanges. In particular, themore
the system approaches the failure, the more the variance of the spare parts demand
reduces. This arises from the fact that the presented demand forecasting method can
make full use of the CM data up to the current time and thus the estimated failure
time of the system can accurately reflect the actual state of the operating system.
Another observation is that the spare parts demand in the early stage of the system
operation is small. The implication of this result is to suggest the manager not to
prepare the spare parts too early so as to reduce the management costs of the system.
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Fig. 15.4 Variance of the forecasting spare parts demand
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Chapter 16
Variable Cost-Based Maintenance
and Inventory Model

16.1 Introduction

The traditional maintenance and spare parts inventory decision models mainly rely
on using population-specific reliability distribution, which cannot reflect the different
degradation characteristics of single in-service equipment. With advances in condi-
tion monitoring (CM) technologies, many researchers advocated using the real-time
prognostic information for individual equipment to optimize the subsequent mainte-
nance and inventory decisions [1–4].Carr andWang in [5] utilized the semi-stochastic
filtering approach to estimate the remaining useful life (RUL) of the equipment, and
then, proposed a cost-based maintenance model with the prognostic information.
Based on the prognostic model developed by [6], Kaiser and Gebraeel in [7] pro-
posed a predictive maintenance policy and realized the real-time maintenance deci-
sion. However, they only considered the replacement model. Along the line of the
work by Armstrong and Atkins [8], Elwany et al. in [9] considered the replacement
and spare parts inventory decisions with the prognostic information simultaneously.
Specifically, they assumed an equipment with room to store only one spare part,
and focused on a sequential decision-making process where the optimal replacement
time was first evaluated followed by the optimal ordering time. Once the optimal
replacement time was computed, then it was used to decide when to order the spare
part. Under predictive maintenance framework, the optimal replacement time and
inventory ordering time can be real-time updated. Note that, the work in [9] just used
the long-run average cost per unit time as the objective function of the replacement
decision. In fact, most of the preventive maintenance policies in the literature are
evaluated with the expected cost criteria only. However, it is generally more critical
to consider not only the expectation of the maintenance cost, but also the variability
of the cost. Furthermore, for the sequential replacement and inventory policy, the
cost variability has a direct influence on the subsequent inventory decision and will
result in an ineffective ordering time and finally lead to a huge cost.

In the literature, Tapiero and Venezia first considered the variability in mainte-
nance cost and presented a replacement policy based on such variability

© National Defense Industry Press and Springer-Verlag GmbH Germany 2017
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Springer Series in Reliability Engineering, DOI 10.1007/978-3-662-54030-5_16
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[10]. Filar et al. in [11] discussed and compared several measures of variability
for stochastic processes with rewards. Motivated by Tapiero and Venezia [10], Chen
and Jin [12], Gosavi [13], and Giri and Dohi [14] investigated many maintenance
policies by minimizing the cost with the variability discount. However, all these
works formulated the maintenance policy in the age-based replacement framework
and thus the real-time condition monitoring information is not considered. There-
fore, these policies aimed to schedule the maintenance activity for a population but
not for an individual. However, considering real time condition monitoring informa-
tion is desirable so that the optimal replacement time is repeatedly updated during
equipment operation to ensure the most recently calculated replacement time accu-
rately reflects the current reality of the monitored equipment. Recently, Chen et al. in
[15] considered a condition-based replacement model based on the variability of the
maintenance cost in condition-based maintenance framework. However, this work
did not incorporate the prognostic information. Si et al. in [16] proposed a cost-
variability-sensitive maintenance model incorporating the prognostic information.
But they did not consider the issue about the spare parts inventory decision.

In this chapter, we develop a new sequential maintenance and inventory model to
consider the effects of both the expectation of themaintenance cost and its variability.
Given the prognostic information obtained from condition monitoring and variable
maintenance cost, we obtain a maintenance decision which is different from that of
the mean maintenance cost-based model under the same setting. Moreover, we also
establish an inventory decision model on the basis of the determined maintenance
time. The prognostic information is obtained from a degradation process modeled as
an adaptive Wiener process in real time. We demonstrate the proposed method with
a practical case study. The results indicate that our method can effectively mitigate
the management risk for the maintenance and spare parts inventory, but with a small
cost increase.

The remainder parts are organized as follows. In Sect. 16.2, we present a Wiener-
process-based degradation model for prognostics. In Sect. 16.3 we propose a para-
meter estimation procedure based on expectation maximization (EM) algorithm.
Section16.4 establishes the real-time variable cost-based maintenance model and
the inventory decision model with the prognostic information involved. Section16.5
provides a practical case study.

16.2 Degradation Modeling for Prognostics

In this chapter, we consider applying aWiener-process-based model with a recursive
filter algorithm developed in [3, 17] to obtain the prognostics information and then
use this information to establish the replacement model and spare parts ordering
model.
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16.2.1 Degradation Modeling

In general, a Wiener process {X (t), t ≥ 0} can be represented as

X (t) = λt + σB B(t), (16.1)

where λ is a defined drift coefficient, σB > 0 is a diffusion coefficient, and B(t) is the
standard Brownian motion (BM). Without loss of generality, we assume X (0) = 0
in this chapter.

Considering the potential for updating knowledge of the process when new degra-
dation observations become available, for t > ti , we model the degradation process
over time since ti as

X (t) = xi + λ(t − ti ) + σB B(t − ti ). (16.2)

For deriving the RUL estimation according to Eq. (16.2), we employ the concept of
the first hitting time (FHT) to define the lifetime, which can be interpreted as the
FHT of the degradation state crossing a threshold level [18]. From the concept of
FHT, when degradation X (t) modeled as Eq. (16.2) reaches a pre-set critical level
w, the equipment can be declared to be failed and thus there was no useful lifetime
left. Then, the RUL Li at ti can be defined as

Li = inf
{
li : X (ti + li ) ≥ w|X1:i ,∀1 ≤ j ≤ i, x j < w

}
, (16.3)

with the probability density function (PDF) f Li |X1:i ( li |X1:i ) and the cumulative
density function (CDF) FLi |X1:i ( li |X1:i ).

16.2.2 RUL Estimation

To incorporate the history of the observations of the degradation, we consider an
updating procedure for the drifting parameterλbymakingλ evolving asλi = λi−1+η

over time, where η ∼ N (0, Q). As such, the drift parameter is evolving as a random
variable with a probabilistic distribution, conditional on the observed data up to time
ti . The reason to make λ time-varying with the collecting data is that the degradation
trend is dominated by the drift coefficient while the variance coefficient reflects the
uncertainty in degradation process. In order to establish the linkage between the drift
parameter and the observation history up to date, the degradation equation can be
reconstructed and taken to be a self-organizing state-space model as

{
λi = λi−1 + η

xi = xi−1 + λi−1(ti − ti−1) + σBεi
(16.4)
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where the error terms are distributed as η ∼ N (0, Q) and εi ∼ N (0, ti − ti−1). The
use of ti − ti−1 as the variance of εi is derived by the property of BM. In this chapter
we assume that the initial drift λ0 follows a normal distribution with the meanμ0 and
the variance P0. As such, the drift parameter is considered as a latent “state” and can
only be estimated from the historical information X1:i = {x1, x2, . . . xi } due to its
unobservable nature. In the established state-space model (16.4), the state equation
and the observation equation are linear and the associated noises are Gaussian. As
such, we utilize Kalman filter to estimate the latent drift parameter. The specific
Kalman filter algorithm can be found in [3] and here we do not discuss this issue.

By Kalman filter, we can estimate λi at time ti from the historical observations.
First, define λ̂i |i = E(λi |X1:i ) and Pi |i = Var(λi |X1:i ) as the expectation and
variance ofλi which are conditional on thewhole historical information, respectively.
Then we can obtain that λi ∼ N (λ̂i |i , Pi |i ) at time ti . Here we need to consider the
impact of the uncertainty of estimated λi on the RUL distribution. In order to achieve
this aim, according to the law of total probability, the PDF of the RUL at time ti can
be formulated with the available degradation measurement X1:i as

fLi |X1:i (li |X1:i ) = w − xi√
2πl3i

(
Pi |i li + σ 2

B

) exp
⎛
⎜⎝−

(
w − xi − λ̂i |i li

)2

2li
(
Pi |i li + σ 2

B

)
⎞
⎟⎠ , li > 0

(16.5)
and the CDF can be written as

FLi |X1:i ( li |X1:i ) = 1 − Φ

(
w−xi−λ̂i |i li√
Pi |i l2i +σ 2

Bli

)
+ exp

[
2λ̂i |i (w−xi )

σ 2
B

+ 2Pi |i (w−xi )2

σ 4
B

]

Φ

[
− 2Pi |i (w−xi )li+σ 2

B (λ̂i |i li+w−xi )

σ 2
B

√
Pi |i l2i +σ 2

Bli

] (16.6)

where λ̂i |i and Pi |i can be obtained from Kalman filter, Φ(·) denotes the CDF of the
normal distribution.

Once the new degradation observation is available and the parameter is updated,
the RUL of this monitored equipment can be computed using Eq. (16.5). In fact, the
parameters in the state-space model can be estimated simultaneously in conjunction
with the drifting parameter. In the next section, we will discuss the issue about
parameter estimation.

16.3 Parameter Estimation

In the above section we have already obtained the PDF and CDF of the RUL. Since
the model parameter vector θ = [μ0, P0, σB, Q] is unknown, we need to estimate
them based on the available CM information up to the current time. It is difficult to
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estimate the parameters directly because of the latent “state”, i.e., drifting parameter.
Thus, in this chapter, the EM algorithm is used to estimate the unknown parameters.

The EM algorithm is an iterative method and its key idea is to compute the
conditional expectation of one log-likelihood functionwhich consists of the complete
data set (λ0:i , X0:i ). This implies that maximizing the conditional expectation of
the complete data log-likelihood function iteratively can generate a sequence of
parameter estimates which eventually converge to the MLE of the parameters. Let

θ̂
( j)

denote the estimate of the parameter from the j th iteration of the EM algorithm,
then the conditional expectation of the complete data log-likelihood function denoted

byQ(θ , θ̂
( j)

) can be formulated as

Q(θ, θ̂
( j)

) = E
θ̂

( j){[log p(λ0:i , X0:i |θ)]|X0:i } (16.7)

where log p(λ0:i , X0:i |θ) is the complete data log-likelihood function. The more
details can be found in [19]. In sum, the parameter estimation procedure consists of
the following two steps:

(1) E-step

Compute: Q(θ, θ̂
( j)

);

(2) M-step

Compute: θ̂
( j+1) = argmax

θ

Q(θ , θ̂
( j)

)

The above steps are iterated with an initial guess θ̂
(0)

until the criterion of con-
vergence is satisfied.

Specifically for our model (16.4), to calculate Q(θ, θ̂
( j)

), for k = 0, 1, 2, . . . , i ,
we first define the following quantities:

λ̂k|i = E
θ̂

( j) (λk |X0:i ), Pk|i = E
θ̂

( j) (λ2
k |X0:i ) − λ̂2

k|i ,

Pk,k−1|i = E
θ̂

( j) (λkλk−1|X0:i ) − λ̂k|i λ̂k−1|i (16.8)

After some algebraic manipulations, we have

Q(θ , θ̂
( j)

) ∝ − log P0 −
(
(P0|i + λ̂2

0|i + μ2
0 − 2μ0λ̂0|i )

/
P0

)

−
i∑

k=1

(
(log Q + Pk|i + λ̂2

k|i + Pk−1|i + λ̂2
k−1|i − 2(Pk,k−1|i + λ̂k|i λ̂k−1|i ))

/
Q

)

−
i∑

k=1

[
log σB +

(
(Xk − Xk−1)

2 − 2λ̂k−1|i (Xk − Xk−1)(tk − tk−1) (16.9)

+(tk − tk−1)
2(Pk−1|i + λ̂2

k−1|i )
) /

(σ 2
B(tk − tk−1))

]
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Clearly, computing the conditional expectation requires evaluating the quantities

defined in Eq. (16.8) with respect to the estimated parameter θ̂
( j)

at the j th iteration.
In this chapter, we utilize the Kalman Smoother to estimate these quantities. Kalman
smoother includes two parts: one part is forward recursion, i.e., filtering, and the
other is backward recursion, i.e., smoothing. The more details can be found in [17].

After obtaining Q(θ, θ̂
( j)

), the unknown parameter vector θ̂
( j+1)

at the ( j +
1)th iteration can be obtained through maximizing the conditional expectation with
respect to θ . Particularly, for computing convenience, according to the first order

necessary condition, we calculate the partial derivatives of Q(θ, θ̂
( j)

) with respect
to μ0, P0, σ 2

B, Q. Then we have

μ̂0 = λ̂0|i , P̂0 = P0|i ,

σ̂ 2
B = 1

i

i∑
k=1

(Xk−Xk−1)
2−2λ̂k−1|i (Xk−Xk−1)(tk−tk−1)+(tk−tk−1)

2(Pk−1|i+λ̂2
k−1|i )

tk−tk−1
,

Q̂ =
(
Pk|i + λ̂2

k|i + Pk−1|i + λ̂2
k−1|i − 2(Pk,k−1|i + λ̂k|i λ̂k−1|i )

)/
i.

(16.10)

From the above derivation, we can see that once the new observation data are avail-
able, we can utilize the EM algorithm to evaluate and update the parameters until
the criterion of convergence is satisfied. Additionally, in the process of parameter
estimation, we can also obtain the updated drift parameter simultaneously.

16.4 Replacement and Inventory Decision Modeling

In order to study a variable cost-based maintenance policy and further to study
the influence of the considered maintenance policy on the subsequent spare parts
inventory, the measure of the cost variability needs to be first defined. In this chapter,
the long-run variance measure recommended by [13] is used. A counting process
{N (t), t ≥ 0} is considered. Let Tn denote the time between the (n−1)th and the nth
replacement in this process with n ≥ 1. If {T1, T2, . . .} is a sequence of non-negative
random variables which are independent and identically distributed, the counting
process is called a renewal process. Let Cn denote the cost associated with the nth
renewal under policy π , then Cπ (t) = ∑N (t)

n=1 Cn is the sum of the single cost up to
time t and C2

π (t) = ∑N (t)
n=1 (Cn)

2 is the sum of the square of the single cost up to
time t , according to the renewal theorem, the long-run expected cost E[Cπ (t)], the
long-run expected square cost E[C2

π (t)] and the expected cycle E[Tπ ] can be written
as

E[Cπ (t)]=E[Cn], E[C2
π (t)] = E[(Cn)

2], E[Tπ ] = E[Tn] (16.11)

From [13], the long-run expected cost per unit time under maintenance policy π

can be defined as
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ϕπ = lim
t→∞

∑N (t)
n=1 Cn

t
(16.12)

The long-run mean square cost under maintenance policy π is defined as

ψπ = lim
t→∞

∑N (t)
n=1 (Cn)

2

t
(16.13)

The long-run variance of the cost under maintenance policy π is defined as

Vπ = lim
t→∞

∑N (t)
n=1 (Cn − E[Cπ (t)])2

t
(16.14)

From the above definitions, we have the following lemma.

Lemma 16.1 If |E[Cπ (t)]| < ∞, E[Tπ ] < ∞, E[C2
π (t)] < ∞, then with probabil-

ity 1(w.p.1)

ϕπ = E[Cπ (t)]

E[Tπ ]
, ψπ = E[C2

π (t)]

E[Tπ ]
, Vπ = E[C2

π (t)] − (E[Cπ (t)])2

E[Tπ ]
(16.15)

Proof We only give the proof of Vπ , the others can be proved accordingly.

Vπ = lim
t→∞

∑N (t)
n=1

(
Cn−E[Cπ(t)]

)2

t = lim
t→∞

(∑N (t)
n=1

(
Cn−E[Cπ (t)]

)2

N (t)

) (
N (t)
t

)

= E[C2
π(t)]−

(
E[Cπ(t)]

)2

E[Tπ ]
w.p.1

(16.16)

Equation (16.16) follows from the fact that

∑N (t)
n=1 (Cn − E[Cπ (t)])2

N (t)
=

∑N (t)
n=1 (Cn)

2

N (t)
− 2

∑N (t)
n=1 CnE[Cπ (t)]

N (t)
+

∑N (t)
n=1 (E[Cπ (t)])2

N (t)

= E[C2
π (t)] − (E[Cπ (t)])

2 w.p.1 as t → ∞

and the elementary renewal theorem, which implies that lim
t→∞ N (t)

/
t = 1

/
E[Tπ ]

w.p.1. This completes the proof.

Then, the variable cost-based maintenance optimization problem can be formu-
lated as

min
π

[(ϕπ) + αVπ ] , α ≥ 0 (16.17)

where π is the class of the considered maintenance polices, and α, is the cost-
variability-sensitive factor. From Eq. (16.17), we can see that the objective function
is equivalent to the traditional cost policy when α = 0.
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In the above equation, α can be interpreted as the relative weight of variability.
The specific value of α is usually set based on either engineering expert knowledge
or accepted industrial standards. The intuitive meaning of α < 1 is that the decision
maker considers that the improvement in variability has less impact than the same
degree of improvement in the mean cost. In other words, the cost-variability is less
significant than the mean cost. Similarly, α > 1 means that the variability has a
more significant impact than the mean cost on the decision-making. We note that
the most common intuition of the decision makers is to consider the mean cost to be
more significant than the cost-variability. Therefore, the decision makers should be
cautious when they decide to use a α, with a value greater than one.

Under prognostic information provided in Sect. 16.2, the above optimization prob-
lem can be formulated as Variance-Penalized Decision Problem. Suppose that the
degradation observation is xi at the i th CM point ti , the associated variable cost
optimization problem can be represented as follows

Cπ (i, xi ) = min
t∗∈[ti ,∞)

[(ϕπ(i, xi )) + αVπ (i, xi )] , α ∈ [0,∞) (16.18)

with

ϕπ (i, xi ) = cp + (c f − cp) Pr(Li < tr − ti |X1:i )
ti + (tr − ti ) (1 − Pr(Li < tr − ti |X1:i )) + ∫ tr−ti

li=0 li fLi |X1:i ( li |X1:i )dli
(16.19)

Vπ (i, xi ) =
c2p +

(
c2f − c2p

)
Pr(Li < tr − ti |X1:i ) − (

cp + (c f − cp) Pr(Li < tr − ti |X1:i )
)2

ti + (tr − ti ) (1 − Pr(Li < tr − ti |X1:i )) + ∫ tr−ti
0 li fLi |X1:i ( li |X1:i )dli

(16.20)

where Pr( Li < t − ti |X1:i ) = ∫ t−ti
0 fLi |X1:i (li |X1:i )dli and fLi |X1:i (li |X1:i ) can be

obtained from Eq. (16.5), tr is the decision variable representing the planned replace-
ment time at the i th CM point, cp is the mean cost of a preventive replacement, and
c f is the mean replacement cost associated with the failure; ϕπ(i, xi ) and Vπ (i, xi )
are the long-run average cost per unit time and long-run variance of the cost under
maintenance policy π at the state (i, xi ), respectively.

Suppose that the optimal planned replacement time is t∗r at time ti , then according
to the spare parts inventory policy developed in [8, 13], the long-run average inventory
cost per unit time with prognostic information C0(i, xi ) can be formulated as

C0(i, xi ) = ks
∫ t0+L
t0

FLi |X1:i ( li |X1:i )dli + kh
∫ t∗r
t0+L

(
1 − FLi |X1:i ( li |X1:i )

)
dli∫ t0+L

t0
FLi |X1:i ( li |X1:i )dli + ∫ t∗r

0

(
1 − FLi |X1:i ( li |X1:i )

)
dli + ti

(16.21)

where FLi |X1:i ( li |X1:i )dli can be obtained from Eq. (16.6), t0 is the decision variable
representing the inventory ordering time at time ti , kh is the holding cost per unit
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time, ks is the shortage cost per unit time, and L is the fixed leading time elapsed from
the moment of placing the order up till order receipt. Note that the optimal inventory
ordering time at any CM time point, t∗0 should satisfy the constraint t∗0 + L ≤ t∗r .

Actually, by implementing the Nelder–Mead Simplex method in Matlab toolbox,
Eqs. (16.18) and (16.21) can be minimized. Therefore, the optimal replacement time
and spare parts ordering time can be optimized and determined sequentially.

16.5 Case Study

The inertial measurement unit (IMU) is a critical equipment of strapdown inertial
navigation system (SINS), and its operating state has a direct influence on the naviga-
tion precision. The key components of IMU are three gyros and three accelerometers,
whichmeasure the angular velocity and linear acceleration, respectively. In engineer-
ing practice, the gyros operate with certain load under various environments, and the
wheels of the gyros rotate at very high speed. In such case, the rotation axis wears
over time and finally results in the gyros’ drift. Once the drift is equal to or beyond
one pre-set threshold, the IMUwill be considered to be failed and has to be repaired.
Thus, the drift of the gyro is often used as a performance indicator to evaluate the
RUL of an IMU and schedule maintenance activity and spare parts ordering time.

Since the dr0ift along the sense axis is more sensitive to the performance degrada-
tion of IMU, in this chapter, we take the drift along the sense axis as the degradation
variable. Moreover, according to the engineering experience and the request to the
navigation precision of IMU, we set the failure threshold equal to 0.38 (◦/hour) with
respect to the drift along the sense axis. The data set is illustrated as Fig. 16.1 with a
regular CM interval 3h.

First, we use the approach developed in Sects. 16.2 and 16.3 to estimate and
update the unknown parameters of model (16.4) and the RUL distribution once
the new CM data are available, then we incorporate the estimated RUL into the
subsequent maintenance and inventory model. The initial parameter values of model

Fig. 16.1 The actual drift
data and the predictions with
adapted BM
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Fig. 16.2 Illustration of the condition-based replacement and inventory decisions at three CM
points
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(16.4) are set to μ0 = 0.005 P0 = 0.01, σB = 0.1, and Q = 0.001. The final
estimated parameter values are μ0 = 0.0066 P0 = 1.1089 × 10−5, σB = 0.0097,
and Q = 1.1304 × 10−6. Then, for illustrative purpose, in this case study, we set
c f = 10000RMBcp = 4000RMB, the holding cost per unit time kh = 1RMB
the shortage cost per unit time ks = 30000RMB and the leading time L = 2 h.
Figure16.2a–d illustrate the expected cost per unit time against the associated time
until replacement, and the variable cost withα = 0.3α = 0.05, andα = 0.02 at three
different CM points, the 66th, 74th and 80th CM points. Figure16.2e–h illustrate
the corresponding inventory ordering results with respect to the three cases.

From Fig. 16.2, it can be seen that the optimal replacement times (denoted by
circles) under variable cost policy are always earlier than the corresponding mean
cost policy, at different CM points. In other words, the variable cost optimal policy
tends to be more conservative than the mean cost optimal policy. In addition, it
seems that the larger the relative weight α, the shorter is the preventive replacement
interval. This seems to be consistent with the intuition that the maintenance risk can
be reduced through increasing the replacement frequency. Furthermore, we can find
that the optimal inventory ordering times are different under different replacement
policies. The shorter the replacement interval, the earlier the inventory ordering time
is. Thus, considering the variable cost can reduce the maintenance and inventory
risks simultaneously. To clearly compare the optimal maintenance and inventory
cost between mean cost policy and variable cost policy, the minimized maintenance
cost and long-run mean inventory cost are summarized in Table16.1, where the
maintenance cost is called Cost 1 and the inventory cost is called Cost 2.

The results in Table16.1 indicate that our proposed method has a small mainte-
nance cost increase as opposed to the mean cost policy. However, our method can
effectively mitigate the maintenance risk by scheduling the replacement early. In
addition, we can see that the inventory cost under variable cost policy is less than the
one under mean cost policy. Thus, considering the variable maintenance cost has a
direct influence on the subsequent inventory decision.

Table 16.1 Optimal maintenance and inventory costs with mean cost policy and variable cost
policy

Mean cost policy α = 0.3 α = 0.05 α = 0.02

Unit:
RMB

Cost 1 Cost 2 Cost 1 Cost 2 Cost 1 Cost 2 Cost 1 Cost 2

66th

point
389.79 0.0423 401.94 0.0048 398.19 0.0081 395.89 0.0108

74th

point
316.53 0.0321 323.26 0.0066 321.23 0.0076 319.99 0.0090

74th

point
277.49 0.0197 280.38 0.0138 279.51 0.0074 278.98 0.0078
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